[CVPR'22] COAP: Learning Compositional Occupancy of People

Related tags

Deep LearningCOAP
Overview

COAP: Compositional Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2022 paper COAP: Learning Compositional Occupancy of People.

Description

This repository provides the official implementation of an implicit human body model (COAP) which implements efficient loss terms for resolving self-intersection and collisions with 3D geometries.

Installation

The necessary requirements are specified in the requrements.txt file. To install COAP, execute:

pip install git+https://github.com/markomih/COAP.git

Note that Pytorch3D may require manuall installation (see instructions here). Alternatively, we provide a conda environment file to install the dependences:

conda env create -f environment.yml
conda activate coap
pip install git+https://github.com/markomih/COAP.git

Optional Dependencies

Install the pyrender package to use the visualization/tutorial scripts and follow the additional instructions specified here if you wish to retrain COAP.

Tutorials

COAP extends the interface of the SMPL-X package (follow its instructions for the usage) via two volumetric loss terms: 1) a loss for resolving self-intersections and 2) a loss for resolving collisions with 3D geometries flexibly represented as point clouds. In the following, we provide a minimal interface to access the COAP's functionalities:

import smplx
from coap import attach_coap

# create a SMPL body and extend the SMPL body via COAP (we support: smpl, smplh, and smplx model types)
model = smplx.create(**smpl_parameters)
attach_coap(model)

smpl_output = model(**smpl_data)  # smpl forward pass
# NOTE: make sure that smpl_output contains the valid SMPL variables (pose parameters, joints, and vertices). 
assert model.joint_mapper is None, 'COAP requires valid SMPL joints as input'

# access two loss functions
model.coap.selfpen_loss(smpl_output)  # self-intersections
model.coap.collision_loss(smpl_output, scan_point_cloud)  # collisions with other geometris

Additionally, we provide two tutorials on how to use these terms to resolve self-intersections and collisions with the environment.

Pretrained Models

A respective pretrained model will be automatically fetched and loaded. All the pretrained models are available on the dev branch inside the ./models directory.

Citation

@inproceedings{Mihajlovic:CVPR:2022,
   title = {{COAP}: Compositional Articulated Occupancy of People},
   author = {Mihajlovic, Marko and Saito, Shunsuke and Bansal, Aayush and Zollhoefer, Michael and Tang, Siyu},
   booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
   month = jun,
   year = {2022}
}

Contact

For questions, please contact Marko Mihajlovic ([email protected]) or raise an issue on GitHub.

Owner
Marko Mihajlovic
PhD Student in Computer Vision and Machine Learning at ETH Zurich
Marko Mihajlovic
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs

GraphLily: A Graph Linear Algebra Overlay on HBM-Equipped FPGAs GraphLily is the first FPGA overlay for graph processing. GraphLily supports a rich se

Cornell Zhang Research Group 39 Dec 13, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022