[CVPR'22] COAP: Learning Compositional Occupancy of People

Related tags

Deep LearningCOAP
Overview

COAP: Compositional Articulated Occupancy of People

Paper | Video | Project Page

teaser figure

This is the official implementation of the CVPR 2022 paper COAP: Learning Compositional Occupancy of People.

Description

This repository provides the official implementation of an implicit human body model (COAP) which implements efficient loss terms for resolving self-intersection and collisions with 3D geometries.

Installation

The necessary requirements are specified in the requrements.txt file. To install COAP, execute:

pip install git+https://github.com/markomih/COAP.git

Note that Pytorch3D may require manuall installation (see instructions here). Alternatively, we provide a conda environment file to install the dependences:

conda env create -f environment.yml
conda activate coap
pip install git+https://github.com/markomih/COAP.git

Optional Dependencies

Install the pyrender package to use the visualization/tutorial scripts and follow the additional instructions specified here if you wish to retrain COAP.

Tutorials

COAP extends the interface of the SMPL-X package (follow its instructions for the usage) via two volumetric loss terms: 1) a loss for resolving self-intersections and 2) a loss for resolving collisions with 3D geometries flexibly represented as point clouds. In the following, we provide a minimal interface to access the COAP's functionalities:

import smplx
from coap import attach_coap

# create a SMPL body and extend the SMPL body via COAP (we support: smpl, smplh, and smplx model types)
model = smplx.create(**smpl_parameters)
attach_coap(model)

smpl_output = model(**smpl_data)  # smpl forward pass
# NOTE: make sure that smpl_output contains the valid SMPL variables (pose parameters, joints, and vertices). 
assert model.joint_mapper is None, 'COAP requires valid SMPL joints as input'

# access two loss functions
model.coap.selfpen_loss(smpl_output)  # self-intersections
model.coap.collision_loss(smpl_output, scan_point_cloud)  # collisions with other geometris

Additionally, we provide two tutorials on how to use these terms to resolve self-intersections and collisions with the environment.

Pretrained Models

A respective pretrained model will be automatically fetched and loaded. All the pretrained models are available on the dev branch inside the ./models directory.

Citation

@inproceedings{Mihajlovic:CVPR:2022,
   title = {{COAP}: Compositional Articulated Occupancy of People},
   author = {Mihajlovic, Marko and Saito, Shunsuke and Bansal, Aayush and Zollhoefer, Michael and Tang, Siyu},
   booktitle = {Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
   month = jun,
   year = {2022}
}

Contact

For questions, please contact Marko Mihajlovic ([email protected]) or raise an issue on GitHub.

Owner
Marko Mihajlovic
PhD Student in Computer Vision and Machine Learning at ETH Zurich
Marko Mihajlovic
Implementation of CVPR'21: RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction

RfD-Net [Project Page] [Paper] [Video] RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction Yinyu Nie, Ji Hou, Xiaoguang Han, Matthi

Yinyu Nie 162 Jan 06, 2023
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
A framework for multi-step probabilistic time-series/demand forecasting models

JointDemandForecasting.py A framework for multi-step probabilistic time-series/demand forecasting models File stucture JointDemandForecasting contains

Stanford Intelligent Systems Laboratory 3 Sep 28, 2022
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Simple-Neural-Network From Scratch in Python

Simple-Neural-Network From Scratch in Python This is a simple Neural Network created without any Machine Learning Libraries. The only dependencies are

Aum Shah 1 Dec 28, 2021