PyTorch implementation for paper Neural Marching Cubes.

Related tags

Deep LearningNMC
Overview

NMC

PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang.

Paper | Supplementary Material (to be updated)

Citation

If you find our work useful in your research, please consider citing:

@article{chen2021nmc,
  title={Neural Marching Cubes},
  author={Zhiqin Chen and Hao Zhang},
  journal={arXiv preprint arXiv:2106.11272},
  year={2021}
}

Notice

We have implemented Neural Dual Contouring (NDC). NDC is based on Dual Contouring and thus much easier to implement than NMC. It produces less triangles and vertices (1/8 of NMC, 1/4 of NMC-lite, ≈MC33), with better triangle quality. It runs faster than NMC because it has significantly less values to predict for each cube (1 bool 3 float for NDC, v.s. 5 bool 51 float for NMC), therefore the network size could be significantly reduced. Yet, it cannot reconstruct some cube cases, and may introduce non-manifold edges.

Requirements

  • Python 3 with numpy, h5py, scipy and Cython
  • PyTorch 1.8 (other versions may also work)

Build Cython module:

python setup.py build_ext --inplace

Datasets and pre-trained weights

For data preparation, please see data_preprocessing.

We provide the ready-to-use datasets here.

Backup links:

We also provide the pre-trained network weights.

Backup links:

Note that the weights are divided into six folders:

Folder Method Input
1_NMC_sdf_unit_scale NMC SDF grid, each grid cell must have unit length
2_NMC_lite_sdf_unit_scale NMC-lite SDF grid, each grid cell must have unit length
3_NMC_voxel NMC Voxel grid, 1=occupied, 0=otherwise
4_NMC_lite_voxel NMC-lite Voxel grid, 1=occupied, 0=otherwise
5_NMC_sdf_scale_0.001-2 NMC SDF grid, each grid cell could have length from 0.001 to 2.0
6_NMC_lite_sdf_scale_0.001-2 NMC-lite SDF grid, each grid cell could have length from 0.001 to 2.0
This GitHub repo NMC = 5_NMC_sdf_scale_0.001-2

Training and Testing

Before training, please replace LUT_tess.npz (the Look-Up Table for cube tessellations) in the main directory with the corresponding version of your training target (either NMC or NMC-lite). Both versions of LUT_tess.npz can be found at tessellation.

To train/test NMC with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_NMC --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type sdf

To train/test NMC-lite with SDF input:

python main.py --train_bool --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --train_float --epoch 400 --data_dir groundtruth/gt_simplified --input_type sdf
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type sdf

To train/test NMC with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_NMC --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_NMC --input_type voxel

To train/test NMC-lite with voxel input:

python main.py --train_bool --epoch 200 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --train_float --epoch 100 --data_dir groundtruth/gt_simplified --input_type voxel
python main.py --test_bool_float --data_dir groundtruth/gt_simplified --input_type voxel

To evaluate Chamfer Distance, Normal Consistency, F-score, Edge Chamfer Distance, Edge F-score, you need to have the ground truth normalized obj files ready in a folder objs. See data_preprocessing for how to prepare the obj files. Then you can run:

python eval_cd_nc_f1_ecd_ef1.py

To count the number of triangles and vertices, run:

python eval_v_t_count.py

If you want to test on your own dataset, please refer to data_preprocessing for how to convert obj files into SDF grids and voxel grids. If your data are not meshes (say your data are already voxel grids), you can modify the code in utils.py to read your own data format. Check function read_data_input_only in utils.py for an example.

Owner
Zhiqin Chen
Video game addict.
Zhiqin Chen
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
Xi Dongbo 78 Nov 29, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger Bands to create a projected active liquidity range.

Gamma's Strategy One This initial strategy was developed specifically for larger pools and is based on taking a moving average and deriving Bollinger

Gamma Strategies 46 Dec 02, 2022
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022