CJK computer science terms comparison / 中日韓電腦科學術語對照 / 日中韓のコンピュータ科学の用語対照 / 한·중·일 전산학 용어 대조

Overview

CJK computer science terms comparison

GitHub Netlify Creative Commons License

This repository contains the source code of the website. You can see the website from the following link:

Greater China, Japan, and Korea, the so-called Sinosphere (漢字文化圈; literally: "Chinese character cultural sphere"), have borrowed many concepts through Sinoxenic vocabularies from the West since the modern era. Some of them have their own translations, but some have imported translations from neighboring countries. In some translations, both native and foreign stems are combined. As a result, Sinosphere countries share a lot of words, but to some extent they have their own parts. And this is no different in computer science translations.

This page contains comparison tables of how computer science terms, mostly derived from English, are translated and called in different regions of Sinosphere.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Introduction

Cognates

Cognates are words that are derived from one side or share a common etymology.

For example, the English word computer and the Korean word 컴퓨터, the Japanese word 計算科学 (keisan kagaku) and the Chinese word 計算科學 (jìsuàn kēxué), that are both meaning computational science, are cognates.

Cognates are indicated by the same colored border.

Calque (loan translation)

Calque is a word or phrase borrowed from another language by literal word-for-word or root-for-root translation.

For example, the Chinese word 軟件 is a translation of the English word software, which translates the English words soft (ruǎn; soft or flexible) and ware (jiàn; clothes or item) respectively.

Matching words/roots between languages in this way are underlined with the same color & shape.

Homophonic translations

For a root transcribed from a foreign word, the original word is displayed on the root.

For example, as the Japanese word コンピュータ (konpyu-ta) is a transcription of English word computer, it is displayed like: コンピュータcomputer.

Romanized pronunciation

The pronunciation of each word is shown in Latin letters in parentheses below the word. The transcription system for each language is as follows:

Mandarin (China & Taiwan) : Hanyu Pinyin

Cantonese (Hong Kong) : Jyutping (Linguistic Society of Hong Kong Cantonese Romanization Scheme)

Japanese : Hepburn romanization

Korean : Revised Romanization of Korean

Basic terms

Show table.

Units

Show table.

Fields of study

Show table.

Computer programming

Show table.

Tools

Show table.

Theory of computation

Show table.

*[CJK]: Chinese, Japanese, and Korean languages

Owner
Hong Minhee (洪 民憙)
A software engineer from Seoul. An advocate of F/OSS, Open Web, and Cypherpunk. Hack into East Asian languages.
Hong Minhee (洪 民憙)
FedNLP: A Benchmarking Framework for Federated Learning in Natural Language Processing

FedNLP is a research-oriented benchmarking framework for advancing federated learning (FL) in natural language processing (NLP). It uses FedML repository as the git submodule. In other words, FedNLP

FedML-AI 216 Nov 27, 2022
RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2

RoNER RoNER is a Named Entity Recognition model based on a pre-trained BERT transformer model trained on RONECv2. It is meant to be an easy to use, hi

Stefan Dumitrescu 9 Nov 07, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
SimCSE: Simple Contrastive Learning of Sentence Embeddings

SimCSE: Simple Contrastive Learning of Sentence Embeddings This repository contains the code and pre-trained models for our paper SimCSE: Simple Contr

Princeton Natural Language Processing 2.5k Jan 07, 2023
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 169 Jan 05, 2023
DAGAN - Dual Attention GANs for Semantic Image Synthesis

Contents Semantic Image Synthesis with DAGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evalu

Hao Tang 104 Oct 08, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
A NLP program: tokenize method, PoS Tagging with deep learning

IRIS NLP SYSTEM A NLP program: tokenize method, PoS Tagging with deep learning Report Bug · Request Feature Table of Contents About The Project Built

Zakaria 7 Dec 13, 2022
Code for the paper PermuteFormer

PermuteFormer This repo includes codes for the paper PermuteFormer: Efficient Relative Position Encoding for Long Sequences. Directory long_range_aren

Peng Chen 42 Mar 16, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023
Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

Code repository of the paper Neural circuit policies enabling auditable autonomy published in Nature Machine Intelligence

9 Jan 08, 2023
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
Source code and dataset for ACL 2019 paper "ERNIE: Enhanced Language Representation with Informative Entities"

ERNIE Source code and dataset for "ERNIE: Enhanced Language Representation with Informative Entities" Reqirements: Pytorch=0.4.1 Python3 tqdm boto3 r

THUNLP 1.3k Dec 30, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022