TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Related tags

Deep LearningTransFGU
Overview

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li, Rong Jin

[Preprint]

Getting Started

Create the environment

# create conda env
conda create -n TransFGU python=3.8
# activate conda env
conda activate TransFGU
# install pytorch
conda install pytorch=1.8 torchvision cudatoolkit=10.1
# install other dependencies
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
pip install -r requirements.txt

Dataset Preparation

the structure of dataset folders should be as follow:

data/
    │── MSCOCO/
    │     ├── images/
    │     │     ├── train2017/
    │     │     └── val2017/
    │     └── annotations/
    │           ├── train2017/
    │           ├── val2017/
    │           ├── instances_train2017.json
    │           └── instances_val2017.json
    │── Cityscapes/
    │     ├── leftImg8bit/
    │     │     ├── train/
    │     │     │       ├── aachen
    │     │     │       └── ...
    │     │     └──── val/
    │     │             ├── frankfurt
    │     │             └── ...
    │     └── gtFine/
    │           ├── train/
    │           │       ├── aachen
    │           │       └── ...
    │           └──── val/
    │                   ├── frankfurt
    │                   └── ...
    │── PascalVOC/
    │     ├── JPEGImages/
    │     ├── SegmentationClass/
    │     └── ImageSets/
    │           └── Segmentation/
    │                   ├── train.txt
    │                   └── val.txt
    └── LIP/
          ├── train_images/
          ├── train_segmentations/
          ├── val_images/
          ├── val_segmentations/
          ├── train_id.txt
          └── val_id.txt

Model download

Name mIoU Pixel Accuracy Model
COCOStuff-27 16.19 44.52 Google Drive
COCOStuff-171 11.93 34.32 Google Drive
COCO-80 12.69 64.31 Google Drive
Cityscapes 16.83 77.92 Google Drive
Pascal-VOC 37.15 83.59 Google Drive
LIP-5 25.16 65.76 Google Drive
LIP-16 15.49 60.08 Google Drive
LIP-19 12.24 42.52 Google Drive

Train and Evaluate Our Method

To train and evaluate our method on different datasets under desired granularity level, please follow the instructions here.

Citation

If you find our work useful in your research, please consider citing:

@article{yin2021transfgu,
  title={TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation},
  author={Zhaoyun, Yin and Pichao, Wang and Fan, Wang and Xianzhe, Xu and Hanling, Zhang and Hao, Li and Rong, Jin},
  journal={arXiv preprint arXiv:2112.01515},
  year={2021}
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

machen 11 Nov 27, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
Official Pytorch implementation for 2021 ICCV paper "Learning Motion Priors for 4D Human Body Capture in 3D Scenes" and trained models / data

Learning Motion Priors for 4D Human Body Capture in 3D Scenes (LEMO) Official Pytorch implementation for 2021 ICCV (oral) paper "Learning Motion Prior

165 Dec 19, 2022
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021

Introduction Official Pytorch implementation for Deep Contextual Video Compression, NeurIPS 2021 Prerequisites Python 3.8 and conda, get Conda CUDA 11

51 Dec 03, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Pytorch domain adaptation package

DomainAdaptation This package is created to tackle the problem of domain shifts when dealing with two domains of different feature distributions. In d

Institute of Computational Perception 7 Oct 22, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
Code for the preprint "Well-classified Examples are Underestimated in Classification with Deep Neural Networks"

This is a repository for the paper of "Well-classified Examples are Underestimated in Classification with Deep Neural Networks" The implementation and

LancoPKU 25 Dec 11, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021