Neural network models for joint POS tagging and dependency parsing (CoNLL 2017-2018)

Overview

Neural Network Models for Joint POS Tagging and Dependency Parsing

jptdpv2

Implementations of joint models for POS tagging and dependency parsing, as described in my papers:

  1. Dat Quoc Nguyen and Karin Verspoor. 2018. An improved neural network model for joint POS tagging and dependency parsing. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 81-91. [.bib] (jPTDP v2.0)
  2. Dat Quoc Nguyen, Mark Dras and Mark Johnson. 2017. A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing. In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 134-142. [.bib] (jPTDP v1.0)

This github project currently supports jPTDP v2.0, while v1.0 can be found in the release section. Please cite paper [1] when jPTDP is used to produce published results or incorporated into other software. I would highly appreciate to have your bug reports, comments and suggestions about jPTDP. As a free open-source implementation, jPTDP is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

Installation

jPTDP requires the following software packages:

  • Python 2.7

  • DyNet v2.0

    $ virtualenv -p python2.7 .DyNet
    $ source .DyNet/bin/activate
    $ pip install cython numpy
    $ pip install dynet==2.0.3
    

Once you installed the prerequisite packages above, you can clone or download (and then unzip) jPTDP. Next sections show instructions to train a new joint model for POS tagging and dependency parsing, and then to utilize a pre-trained model.

NOTE: jPTDP is also ported to run with Python 3.4+ by Santiago Castro. Also note that pre-trained models I provide in the last section would not work with this ported version (see a discussion). Thus, you may want to retrain jPTDP if using this ported version.

Train a joint model

Suppose that SOURCE_DIR is simply used to denote the source code directory. Similar to files train.conllu and dev.conllu in folder SOURCE_DIR/sample or treebanks in the Universal Dependencies (UD) project, the training and development files are formatted following 10-column data format. For training, jPTDP will only use information from columns 1 (ID), 2 (FORM), 4 (Coarse-grained POS tags---UPOSTAG), 7 (HEAD) and 8 (DEPREL).

To train a joint model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 [--dynet-mem <int>] [--epochs <int>] [--lstmdims <int>] [--lstmlayers <int>] [--hidden <int>] [--wembedding <int>] [--cembedding <int>] [--pembedding <int>] [--prevectors <path-to-pre-trained-word-embedding-file>] [--model <String>] [--params <String>] --outdir <path-to-output-directory> --train <path-to-train-file>  --dev <path-to-dev-file>

where hyper-parameters in [] are optional:

  • --dynet-mem: Specify DyNet memory in MB.
  • --epochs: Specify number of training epochs. Default value is 30.
  • --lstmdims: Specify number of BiLSTM dimensions. Default value is 128.
  • --lstmlayers: Specify number of BiLSTM layers. Default value is 2.
  • --hidden: Specify size of MLP hidden layer. Default value is 100.
  • --wembedding: Specify size of word embeddings. Default value is 100.
  • --cembedding: Specify size of character embeddings. Default value is 50.
  • --pembedding: Specify size of POS tag embeddings. Default value is 100.
  • --prevectors: Specify path to the pre-trained word embedding file for initialization. Default value is "None" (i.e. word embeddings are randomly initialized).
  • --model: Specify a name for model parameters file. Default value is "model".
  • --params: Specify a name for model hyper-parameters file. Default value is "model.params".
  • --outdir: Specify path to directory where the trained model will be saved.
  • --train: Specify path to the training data file.
  • --dev: Specify path to the development data file.

For example:

SOURCE_DIR$ python jPTDP.py --dynet-seed 123456789 --dynet-mem 1000 --epochs 30 --lstmdims 128 --lstmlayers 2 --hidden 100 --wembedding 100 --cembedding 50 --pembedding 100  --model trialmodel --params trialmodel.params --outdir sample/ --train sample/train.conllu --dev sample/dev.conllu

will produce model files trialmodel and trialmodel.params in folder SOURCE_DIR/sample.

If you would like to use the fine-grained language-specific POS tags in the 5th column instead of the coarse-grained POS tags in the 4th column, you should use swapper.py in folder SOURCE_DIR/utils to swap contents in the 4th and 5th columns:

SOURCE_DIR$ python utils/swapper.py <path-to-train-(and-dev)-file>

For example:

SOURCE_DIR$ python utils/swapper.py sample/train.conllu
SOURCE_DIR$ python utils/swapper.py sample/dev.conllu

will generate two new files for training: train.conllu.ux2xu and dev.conllu.ux2xu in folder SOURCE_DIR/sample.

Utilize a pre-trained model

Assume that you are going to utilize a pre-trained model for annotating a corpus whose each line represents a tokenized/word-segmented sentence. You should use converter.py in folder SOURCE_DIR/utils to obtain a 10-column data format of this corpus:

SOURCE_DIR$ python utils/converter.py <file-path>

For example:

SOURCE_DIR$ python utils/converter.py sample/test

will generate in folder SOURCE_DIR/sample a file named test.conllu which can be used later as input to the pre-trained model.

To utilize a pre-trained model for POS tagging and dependency parsing, you perform:

SOURCE_DIR$ python jPTDP.py --predict --model <path-to-model-parameters-file> --params <path-to-model-hyper-parameters-file> --test <path-to-10-column-input-file> --outdir <path-to-output-directory> --output <String>
  • --model: Specify path to model parameters file.
  • --params: Specify path to model hyper-parameters file.
  • --test: Specify path to 10-column input file.
  • --outdir: Specify path to directory where output file will be saved.
  • --output: Specify name of the output file.

For example:

SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/test.conllu --outdir sample/ --output test.conllu.pred
SOURCE_DIR$ python jPTDP.py --predict --model sample/trialmodel --params sample/trialmodel.params --test sample/dev.conllu --outdir sample/ --output dev.conllu.pred

will produce output files test.conllu.pred and dev.conllu.pred in folder SOURCE_DIR/sample.

Pre-trained models

Pre-trained jPTDP v2.0 models, which were trained on English WSJ Penn treebank, GENIA and UD v2.2 treebanks, can be found at HERE. Results on test sets (as detailed in paper [1]) are as follows:

Treebank Model name POS UAS LAS
English WSJ Penn treebank model256 97.97 94.51 92.87
English WSJ Penn treebank model 97.88 94.25 92.58

model256 and model denote the pre-trained models which use 256- and 128-dimensional LSTM hidden states, respectively, i.e. model256 is more accurate but slower.

Treebank Code UPOS UAS LAS
UD_Afrikaans-AfriBooms af_afribooms 95.73 82.57 78.89
UD_Ancient_Greek-PROIEL grc_proiel 96.05 77.57 72.84
UD_Ancient_Greek-Perseus grc_perseus 88.95 65.09 58.35
UD_Arabic-PADT ar_padt 96.33 86.08 80.97
UD_Basque-BDT eu_bdt 93.62 79.86 75.07
UD_Bulgarian-BTB bg_btb 98.07 91.47 87.69
UD_Catalan-AnCora ca_ancora 98.46 90.78 88.40
UD_Chinese-GSD zh_gsd 93.26 82.50 77.51
UD_Croatian-SET hr_set 97.42 88.74 83.62
UD_Czech-CAC cs_cac 98.87 89.85 87.13
UD_Czech-FicTree cs_fictree 97.98 88.94 85.64
UD_Czech-PDT cs_pdt 98.74 89.64 87.04
UD_Czech-PUD cs_pud 96.71 87.62 82.28
UD_Danish-DDT da_ddt 96.18 82.17 78.88
UD_Dutch-Alpino nl_alpino 95.62 86.34 82.37
UD_Dutch-LassySmall nl_lassysmall 95.21 86.46 82.14
UD_English-EWT en_ewt 95.48 87.55 84.71
UD_English-GUM en_gum 94.10 84.88 80.45
UD_English-LinES en_lines 95.55 80.34 75.40
UD_English-PUD en_pud 95.25 87.49 84.25
UD_Estonian-EDT et_edt 96.87 85.45 82.13
UD_Finnish-FTB fi_ftb 94.53 86.10 82.45
UD_Finnish-PUD fi_pud 96.44 87.54 84.60
UD_Finnish-TDT fi_tdt 96.12 86.07 82.92
UD_French-GSD fr_gsd 97.11 89.45 86.43
UD_French-Sequoia fr_sequoia 97.92 89.71 87.43
UD_French-Spoken fr_spoken 94.25 79.80 73.45
UD_Galician-CTG gl_ctg 97.12 85.09 81.93
UD_Galician-TreeGal gl_treegal 93.66 77.71 71.63
UD_German-GSD de_gsd 94.07 81.45 76.68
UD_Gothic-PROIEL got_proiel 93.45 79.80 71.85
UD_Greek-GDT el_gdt 96.59 87.52 84.64
UD_Hebrew-HTB he_htb 96.24 87.65 82.64
UD_Hindi-HDTB hi_hdtb 96.94 93.25 89.83
UD_Hungarian-Szeged hu_szeged 92.07 76.18 69.75
UD_Indonesian-GSD id_gsd 93.29 84.64 77.71
UD_Irish-IDT ga_idt 89.74 75.72 65.78
UD_Italian-ISDT it_isdt 98.01 92.33 90.20
UD_Italian-PoSTWITA it_postwita 95.41 84.20 79.11
UD_Japanese-GSD ja_gsd 97.27 94.21 92.02
UD_Japanese-Modern ja_modern 70.53 66.88 49.51
UD_Korean-GSD ko_gsd 93.35 81.32 76.58
UD_Korean-Kaist ko_kaist 93.53 83.59 80.74
UD_Latin-ITTB la_ittb 98.12 82.99 79.96
UD_Latin-PROIEL la_proiel 95.54 74.95 69.76
UD_Latin-Perseus la_perseus 82.36 57.21 46.28
UD_Latvian-LVTB lv_lvtb 93.53 81.06 76.13
UD_North_Sami-Giella sme_giella 87.48 65.79 58.09
UD_Norwegian-Bokmaal no_bokmaal 97.73 89.83 87.57
UD_Norwegian-Nynorsk no_nynorsk 97.33 89.73 87.29
UD_Norwegian-NynorskLIA no_nynorsklia 85.22 64.14 54.31
UD_Old_Church_Slavonic-PROIEL cu_proiel 93.69 80.59 73.93
UD_Old_French-SRCMF fro_srcmf 95.12 86.65 81.15
UD_Persian-Seraji fa_seraji 96.66 88.07 84.07
UD_Polish-LFG pl_lfg 98.22 95.29 93.10
UD_Polish-SZ pl_sz 97.05 90.98 87.66
UD_Portuguese-Bosque pt_bosque 96.76 88.67 85.71
UD_Romanian-RRT ro_rrt 97.43 88.74 83.54
UD_Russian-SynTagRus ru_syntagrus 98.51 91.00 88.91
UD_Russian-Taiga ru_taiga 85.49 65.52 56.33
UD_Serbian-SET sr_set 97.40 89.32 85.03
UD_Slovak-SNK sk_snk 95.18 85.88 81.89
UD_Slovenian-SSJ sl_ssj 97.79 88.26 86.10
UD_Slovenian-SST sl_sst 89.50 66.14 58.13
UD_Spanish-AnCora es_ancora 98.57 90.30 87.98
UD_Swedish-LinES sv_lines 95.51 83.60 78.97
UD_Swedish-PUD sv_pud 92.10 79.53 74.53
UD_Swedish-Talbanken sv_talbanken 96.55 86.53 83.01
UD_Turkish-IMST tr_imst 92.93 70.53 62.55
UD_Ukrainian-IU uk_iu 95.24 83.47 79.38
UD_Urdu-UDTB ur_udtb 93.35 86.74 80.44
UD_Uyghur-UDT ug_udt 87.63 76.14 63.37
UD_Vietnamese-VTB vi_vtb 87.63 67.72 58.27
Comments
  • Low POS in WSJ

    Low POS in WSJ

    Hi , I tested on the WSJ dataset with model256 and only got accuracy about 95.5%. I would like to ask that how can i get the accuracy 97.97 of the paper. I used the parameters set in the code, no changes were made.

    opened by ava-YangL 3
  • learner.py Word dropout

    learner.py Word dropout

    Seems in lines 252-259 of learner.py, you still consider the character embeddings while the word is potentially dropped. Not sure if this makes sense.

    opened by TheElephantInTheRoom 2
  • Named Entity Recognition tool ?!

    Named Entity Recognition tool ?!

    Salutation Sir... that was a great job and a very powerful PoS tool I wanted to ask you if you developed a "named entity recognition" or as they name it "chunking" tool with this PoS tool. I need it in my experiments
    thanks in advance

    opened by Raki22 1
  •  Low UAS and LAS scores

    Low UAS and LAS scores

    I have tried using your parser to test with EWT English treebank, and surprisingly UAS and LAS scores are low, around 87.50 and 84.53. I have used conll2017 shared task pretrained word embeddings. Do you think this is normal or am I doing something wrong?

    opened by Eugen2525 1
  • trainer.update

    trainer.update

    The trainer.update here doesn't make sense.

    This was trainer.update_epoch() in the original code-base of bist-parser, but since the port from Dynet v1.1 to Dynet v2, the update_epoch function is deprecated. The use for calling update_epoch was to update the learning_rate. Which is not going to happen by calling trainer.update, as far as I know.

    opened by TheElephantInTheRoom 1
Releases(v1.0)
  • v1.0(Feb 28, 2018)

Owner
Dat Quoc Nguyen
Dat Quoc Nguyen
Healthsea is a spaCy pipeline for analyzing user reviews of supplementary products for their effects on health.

Welcome to Healthsea ✨ Create better access to health with spaCy. Healthsea is a pipeline for analyzing user reviews to supplement products by extract

Explosion 75 Dec 19, 2022
NLP, before and after spaCy

textacy: NLP, before and after spaCy textacy is a Python library for performing a variety of natural language processing (NLP) tasks, built on the hig

Chartbeat Labs Projects 2k Jan 04, 2023
Spooky Skelly For Python

_____ _ _____ _ _ _ | __| ___ ___ ___ | |_ _ _ | __|| |_ ___ | || | _ _ |__ || . || . || . || '

Kur0R1uka 1 Dec 23, 2021
The source code of "Language Models are Few-shot Multilingual Learners" (MRL @ EMNLP 2021)

Language Models are Few-shot Multilingual Learners Paper This is the source code of the paper [Arxiv] [ACL Anthology]: This code has been written usin

Genta Indra Winata 45 Nov 21, 2022
Universal End2End Training Platform, including pre-training, classification tasks, machine translation, and etc.

背景 安装教程 快速上手 (一)预训练模型 (二)机器翻译 (三)文本分类 TenTrans 进阶 1. 多语言机器翻译 2. 跨语言预训练 背景 TrenTrans是一个统一的端到端的多语言多任务预训练平台,支持多种预训练方式,以及序列生成和自然语言理解任务。 安装教程 git clone git

Tencent Minority-Mandarin Translation Team 42 Dec 20, 2022
Creating a chess engine using GPT-3

GPT3Chess Creating a chess engine using GPT-3 Code for my article : https://towardsdatascience.com/gpt-3-play-chess-d123a96096a9 My game (white) vs GP

19 Dec 17, 2022
Active learning for text classification in Python

Active Learning allows you to efficiently label training data in a small-data scenario.

Webis 375 Dec 28, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
BERT score for text generation

BERTScore Automatic Evaluation Metric described in the paper BERTScore: Evaluating Text Generation with BERT (ICLR 2020). News: Features to appear in

Tianyi 1k Jan 08, 2023
Modified GPT using average pooling to reduce the softmax attention memory constraints.

NLP-GPT-Upsampling This repository contains an implementation of Open AI's GPT Model. In particular, this implementation takes inspiration from the Ny

WD 1 Dec 03, 2021
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
This code is the implementation of Text Emotion Recognition (TER) with linguistic features

APSIPA-TER This code is the implementation of Text Emotion Recognition (TER) with linguistic features. The network model is BERT with a pretrained mod

kenro515 1 Feb 08, 2022
InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective

InfoBERT: Improving Robustness of Language Models from An Information Theoretic Perspective This is the official code base for our ICLR 2021 paper

AI Secure 71 Nov 25, 2022
Azure Text-to-speech service for Home Assistant

Azure Text-to-speech service for Home Assistant The Azure text-to-speech platform uses online Azure Text-to-Speech cognitive service to read a text wi

Yassine Selmi 2 Aug 06, 2022
Text editor on python tkinter to convert english text to other languages with the help of ployglot.

Transliterator Text Editor This is a simple transliteration program which is used to convert english word to phonetically matching word in another lan

Merin Rose Tom 1 Jan 16, 2022
An assignment on creating a minimalist neural network toolkit for CS11-747

minnn by Graham Neubig, Zhisong Zhang, and Divyansh Kaushik This is an exercise in developing a minimalist neural network toolkit for NLP, part of Car

Graham Neubig 63 Dec 29, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
ChatBotProyect - This is an unfinished project about a simple chatbot.

chatBotProyect This is an unfinished project about a simple chatbot. (union_todo.ipynb) Reminders for the project: Find why one of the vectorizers fai

Tomás 0 Jul 24, 2022
Code for the project carried out fulfilling the course requirements for Fall 2021 NLP at NYU

Introduction Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization,

Sai Himal Allu 1 Apr 25, 2022