[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Overview

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Introduction

We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the expected output is the bounding boxes along with the descriptions for the underlying objects. To address the 3D object detection and description problems, we propose Scan2Cap, an end-to-end trained method, to detect objects in the input scene and describe them in natural language. We use an attention mechanism that generates descriptive tokens while referring to the related components in the local context. To reflect object relations (i.e. relative spatial relations) in the generated captions, we use a message passing graph module to facilitate learning object relation features. Our method can effectively localize and describe 3D objects in scenes from the ScanRefer dataset, outperforming 2D baseline methods by a significant margin (27.61% [email protected] improvement).

Please also check out the project website here.

For additional detail, please see the Scan2Cap paper:
"Scan2Cap: Context-aware Dense Captioning in RGB-D Scans"
by Dave Zhenyu Chen, Ali Gholami, Matthias Nießner and Angel X. Chang
from Technical University of Munich and Simon Fraser University.

Data

ScanRefer

If you would like to access to the ScanRefer dataset, please fill out this form. Once your request is accepted, you will receive an email with the download link.

Note: In addition to language annotations in ScanRefer dataset, you also need to access the original ScanNet dataset. Please refer to the ScanNet Instructions for more details.

Download the dataset by simply executing the wget command:

wget <download_link>

Scan2CAD

As learning the relative object orientations in the relational graph requires CAD model alignment annotations in Scan2CAD, please refer to the Scan2CAD official release (you need ~8MB on your disk). Once the data is downloaded, extract the zip file under data/ and change the path to Scan2CAD annotations (CONF.PATH.SCAN2CAD) in lib/config.py . As Scan2CAD doesn't cover all instances in ScanRefer, please download the mapping file and place it under CONF.PATH.SCAN2CAD. Parsing the raw Scan2CAD annotations by the following command:

python scripts/Scan2CAD_to_ScanNet.py

Setup

Please execute the following command to install PyTorch 1.8:

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

And don't forget to refer to Pytorch Geometric to install the graph support.

After all packages are properly installed, please run the following commands to compile the CUDA modules for the PointNet++ backbone:

cd lib/pointnet2
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/ - You might want to run python scripts/organize_scanrefer.py to organize the data a bit.
  2. Download the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset).

After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00

  1. Pre-process ScanNet data. A folder named scannet_data/ will be generated under data/scannet/ after running the following command. Roughly 3.8GB free space is needed for this step:
cd data/scannet/
python batch_load_scannet_data.py

After this step, you can check if the processed scene data is valid by running:

python visualize.py --scene_id scene0000_00
  1. (Optional) Pre-process the multiview features from ENet.

    a. Download the ENet pretrained weights (1.4MB) and put it under data/

    b. Download and decompress the extracted ScanNet frames (~13GB).

    c. Change the data paths in config.py marked with TODO accordingly.

    d. Extract the ENet features:

    python scripts/compute_multiview_features.py

    e. Project ENet features from ScanNet frames to point clouds; you need ~36GB to store the generated HDF5 database:

    python scripts/project_multiview_features.py --maxpool

    You can check if the projections make sense by projecting the semantic labels from image to the target point cloud by:

    python scripts/project_multiview_labels.py --scene_id scene0000_00 --maxpool

Usage

End-to-End training for 3D dense captioning

Run the following script to start the end-to-end training of Scan2Cap model using the multiview features and normals. For more training options, please run scripts/train.py -h:

python scripts/train.py --use_multiview --use_normal --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 --batch_size 12 --epoch 50

The trained model as well as the intermediate results will be dumped into outputs/ . For evaluating the model (@0.5IoU), please run the following script and change the accordingly, and note that arguments must match the ones for training:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_caption --min_iou 0.5

Evaluating the detection performance:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection

You can even evaluate the pretraiend object detection backbone:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection --eval_pretrained

If you want to visualize the results, please run this script to generate bounding boxes and descriptions for scene to outputs/ :

python scripts/visualize.py --folder <output_folder> --scene_id <scene_id> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10

Note that you need to run python scripts/export_scannet_axis_aligned_mesh.py first to generate axis-aligned ScanNet mesh files.

3D dense captioning with ground truth bounding boxes

For experimenting the captioning performance with ground truth bounding boxes, you need to extract the box features with a pre-trained extractor. The pretrained ones are already in pretrained, but if you want to train a new one from scratch, run the following script:

python scripts/train_maskvotenet.py --batch_size 8 --epoch 200 --lr 1e-3 --wd 0 --use_multiview --use_normal

The pretrained model will be stored under outputs/ . Before we proceed, you need to move the to pretrained/ and change the name of the folder to XYZ_MULTIVIEW_NORMAL_MASKS_VOTENET, which must reflect the features while training, e.g. MULTIVIEW -> --use_multiview.

After that, let's run the following script to extract the features for the ground truth bounding boxes. Note that the feature options must match the ones in the previous steps:

python scripts/extract_gt_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

The extracted features will be stored as a HDF5 database under /gt_ _features . You need ~610MB space on your disk.

Now the box features are ready - we're good to go! Next step: run the following command to start training the dense captioning pipeline with the extraced ground truth box features:

python scripts/train_pretrained.py --mode gt --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode gt --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

3D dense captioning with pre-trained VoteNet bounding boxes

If you would like to play around with the pre-trained VoteNet bounding boxes, you can directly use the pre-trained VoteNet in pretrained. After picking the model you like, run the following command to extract the bounding boxes and associated box features:

python scripts/extract_votenet_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

Now the box features are ready. Next step: run the following command to start training the dense captioning pipeline with the extraced VoteNet boxes:

python scripts/train_pretrained.py --mode votenet --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode votenet --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

Experiments on ReferIt3D

Yes, of course you can use the ReferIt3D dataset for training and evaluation. Simply download ReferIt3D dataset and unzip it under data, then run the following command to convert it to ScanRefer format:

python scripts/organize_referit3d.py

Then you can simply specify the dataset you would like to use by --dataset ReferIt3D in the aforementioned steps. Have fun!

2D Experiments

Please refer to Scan2Cad-2D for more information.

Citation

If you found our work helpful, please kindly cite our paper via:

@inproceedings{chen2021scan2cap,
  title={Scan2Cap: Context-aware Dense Captioning in RGB-D Scans},
  author={Chen, Zhenyu and Gholami, Ali and Nie{\ss}ner, Matthias and Chang, Angel X},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3193--3203},
  year={2021}
}

License

Scan2Cap is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright (c) 2021 Dave Zhenyu Chen, Ali Gholami, Matthias Nießner, Angel X. Chang

Owner
Dave Z. Chen
PhD candidate at TUM
Dave Z. Chen
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
Deep Learning for Human Part Discovery in Images - Chainer implementation

Deep Learning for Human Part Discovery in Images - Chainer implementation NOTE: This is not official implementation. Original paper is Deep Learning f

Shintaro Shiba 63 Sep 25, 2022
Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentation"

Hyper-Convolution Networks for Biomedical Image Segmentation Code for our WACV 2022 paper "Hyper-Convolution Networks for Biomedical Image Segmentatio

Tianyu Ma 17 Nov 02, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
22 Oct 14, 2022
HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

HeatNet HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events glob

Google Research 6 Jul 07, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022