Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Overview

Neural Scam Artist

TL;DR
A dataset of scam emails is scraped from an anti-fraud website. The dataset is then deduplicated using MinHash and LSH. The deduplicated dataset is used for fine-tuning GPT-2.

Comic stolen from Agent-X Comics.

📖 Table of contents

☁️ Project Description

Objective

The goal of this project is create a new dataset of fraudulent emails that can advance the research on intelligent email assistants.

Web Scraper

Data is scraped from the website https://antifraudintl.org/. At first, a set of thread urls is collected and stored. Then, each thread is searched for emails. For each thread, at most one email is kept as the rest are duplicates. Metadata (Subject, Date etc) is removed. The resultant dataset is stored inside a csv file.

Deduplication

To avoid the quadratic complexity, a cheap alternative is selected: MinHash and LSH using the datasketch library. For each document, this method efficiently locates its nearest neighbors. Because this leads to a a large amount of false negatives (i.e. dulpicate documents that are classified as non-duplicates), the approach is extended by creating a duplicate graph. Nodes in this graph represent documents and are connected with an edge if their respective documents have been classified as duplicates. To deduplicate the dataset, connected components of the graph are located and for each component only a single node is selected. A readability criterion is used for selection.

GPT-2

A small pretrained GPT-2 model from the Huggingface library is fine-tuned on the deduplicated dataset. A collection of cherry-picked randomly selected generated samples can be found here here.

📁 Shared Files

Resource Size #Samples Link
Full dataset 128.5 MB 85,160 Link
Deduplicated dataset 74.2 MB 58,227 Link
Thread urls 6.4 MB 95,324 Link
GPT-2 Checkpoints ~1.5 GB Link

🧰 Requirements

See requirements.txt.

⚙️ Installation

$ git clone https://github.com/davidsvy/Neural-Scam-Artist
$ cd Neural-Scam-Artist
$ pip install -r requirements.txt

🧻 Usage

To generate dataset (~3 hours on Colab):


$ python create_dataset.py [-c configs/create_dataset.yaml]

To deduplicate dataset (~30 minutes on Colab):

$ python deduplicate_dataset.py [-c configs/deduplicate_dataset.yaml]

To train GPT-2 (~3 hours/epoch on Colab with K80):

$ python gpt2_train.py [-c configs/gpt2_train.yaml]

To generate text with GPT-2:

$ python gpt2_sample.py [-c configs/gpt2_sample.yaml]
Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipB

Jie Lei 雷杰 612 Jan 04, 2023
This repository contains examples of Task-Informed Meta-Learning

Task-Informed Meta-Learning This repository contains examples of Task-Informed Meta-Learning (paper). We consider two tasks: Crop Type Classification

10 Dec 19, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 37 Jan 04, 2023
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
Contact Extraction with Question Answering.

contactsQA Extraction of contact entities from address blocks and imprints with Extractive Question Answering. Goal Input: Dr. Max Mustermann Hauptstr

Jan 2 Apr 20, 2022
Official code of our work, Unified Pre-training for Program Understanding and Generation [NAACL 2021].

PLBART Code pre-release of our work, Unified Pre-training for Program Understanding and Generation accepted at NAACL 2021. Note. A detailed documentat

Wasi Ahmad 138 Dec 30, 2022
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
jiant is an NLP toolkit

🚨 Update 🚨 : As of 2021/10/17, the jiant project is no longer being actively maintained. This means there will be no plans to add new models, tasks,

ML² AT CILVR 1.5k Dec 28, 2022
A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

420 Dec 28, 2022
This Project is based on NLTK It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its antonyms, its synonyms

This Project is based on NLTK(Natural Language Toolkit) It generates a RANDOM WORD from a predefined list of words, From that random word it read out the word, its meaning with parts of speech , its

SaiVenkatDhulipudi 2 Nov 17, 2021
PortaSpeech - PyTorch Implementation

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 276 Dec 26, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
Conversational text Analysis using various NLP techniques

Conversational text Analysis using various NLP techniques

Rita Anjana 159 Jan 06, 2023