Multimodal Descriptions of Social Concepts: Automatic Modeling and Detection of (Highly Abstract) Social Concepts evoked by Art Images

Overview

MUSCO - Multimodal Descriptions of Social Concepts

Automatic Modeling of (Highly Abstract) Social Concepts evoked by Art Images

This project aims to investigate, model, and experiment with how and why social concepts (such as violence, power, peace, or destruction) are modeled and detected by humans and machines in images. It specifically focuses on the detection of social concepts referring to non-physical objects in (visual) art images, as these concepts are powerful tools for visual data management, especially in the Cultural Heritage field (present in resources such Iconclass and Getty Vocabularies). The hypothesis underlying this research is that we can formulate a description of a social concept as a multimodal frame, starting from a set of observations (in this case, image annotations). We believe thaat even with no explicit definition of the concepts, a “common sense” description can be (approximately) derived from observations of their use.

Goals of this work include:

  • Identification of a set of social concepts that is consistently used to tag the non-concrete content of (art) images.
  • Creation of a dataset of art images and social concepts evoked by them.
  • Creation of an Social Concepts Knowledge Graph (KG).
  • Identification of common features of art images tagged by experts with the same social concepts.
  • Automatic detection of social concepts in previously unseen art images.
  • Automatic generation of new art images that evoke specific social concepts.

The approach proposed is to automatically model social concepts based on extraction and integration of multimodal features. Specifically, on sensory-perceptual data, such as pervasive visual features of images which evoke them, along with distributional linguistic patterns of social concept usage. To do so, we have defined the MUSCO (Multimodal Descriptions of Social Concepts) Ontology, which uses the Descriptions and Situations (Gangemi & Mika 2003) pattern modularly. It considers the image annotation process a situation representing the state of affairs of all related data (actual multimedia data as well as metadata), whose descriptions give meaning to specific annotation structures and results. It also considers social concepts as entities defined in multimodal description frames.

The starting point of this project is one of the richest datasets that include social concepts referring to non-physical objects as tags for the content of visual artworks: the metadata released by The Tate Collection on Github in 2014. This dataset includes the metadata for around 70,000 artworks that Tate owns or jointly owns with the National Galleries of Scotland as part of ARTIST ROOMS. To tag the content of the artworks in their collection, the Tate uses a subject taxonomy with three levels (0, 1, and 2) of increasing specificity to provide a hierarchy of subject tags (for example; 0 religion and belief, 1 universal religious imagery, 2 blessing).

This repository holds the functions.py file, which defines functions for

  • Preprocessing the Tate Gallery metadata as input source (create_newdict(), get_topConcepts(), and get_parent_rels())
  • Reconstruction and formalization of the the Tate subject taxonomy (get_tatetaxonomy_ttl())
  • Visualization of the Tate subject taxonomy, allowing manual inspection (get_all_edges(), and get_gv_pdf())
  • Identification of social concepts from the Tate taxonomy (get_sc_dict(), and get_narrow_sc_dict())
  • Formalization of taxonomic relations between social concepts (get_sc_tate_taxonomy_ttl())
  • Gathering specific artwork details relevant to the tasks proposed in this project (get_artworks_filenames(), get_all_artworks_tags(), and get_all_artworks_details())
  • Corpus creation: matching social concept to art images (get_sc_artworks_dict() and get_match_details(input_sc))
  • Co-occuring tag collection and analysis (get_all_scs_tag_ids(), get_objects_and_actions_dict(input_sc), and get_match_stats())
  • Image dominant color analyses (get_dom_colors() and get_avg_sc_contrast())

In order to understand the breadth, abstraction level, and hierarchy of subject tags, I reconstructed the hierarchy of the Tate subject data by transforming it into a RDF file in Turtle .ttl format with the MUSCO ontology. SKOS was used as an initial step because of its simple way to assert that one concept is broader in meaning (i.e. more general) than another, with the skos:broader property. Additionally, I used the Graphviz module in order to visualize the hierchy.

Next steps include:

  • Automatic population of a KG with the extracted data
  • Disambiguating the terms, expanding the terminology by leveraging lexical resources such as WordNet, VerbNet, and FrameNet, and studying the terms’ distributional linguistic features.
  • MUSCO’s modular infrastructure allows expansion of types of integrated data (potentially including: other co-occurring social concepts, contrast measures, common shapes, repetition, and other visual patterns, other senses (e.g., sound), facial recognition analysis, distributional semantics information)
  • Refine initial social concepts list, through alignment with the latest cognitive science research as well as through user-based studies.
  • Enlarge and diversify art image corpus after a survey of additional catalogues and collections.
  • Distinguishing artwork medium types

The use of Tate images in the context of this non-commercial, educational research project falls within the within the Tate Images Terms of use: "Website content that is Tate copyright may be reproduced for the non-commercial purposes of research, private study, criticism and review, or for limited circulation within an educational establishment (such as a school, college or university)."

The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximat

Relation Therapeutics 95 Dec 27, 2022
DCSL - Generalizable Crowd Counting via Diverse Context Style Learning

DCSL Generalizable Crowd Counting via Diverse Context Style Learning Requirement

3 Jun 13, 2022
Simple implementation of Mobile-Former on Pytorch

Simple-implementation-of-Mobile-Former At present, only the model but no trained. There may be some bug in the code, and some details may be different

Acheung 103 Dec 31, 2022
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Tutorials, assignments, and competitions for MIT Deep Learning related courses.

MIT Deep Learning This repository is a collection of tutorials for MIT Deep Learning courses. More added as courses progress. Tutorial: Deep Learning

Lex Fridman 9.5k Jan 07, 2023
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization

Born-Infeld (BI) for AI: Energy-Conserving Descent (ECD) for Optimization This repository contains the code for the BBI optimizer, introduced in the p

G. Bruno De Luca 5 Sep 06, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
(JMLR' 19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats & License PyOD is a comprehensive and scalable Python toolkit for detecting outlyin

Yue Zhao 6.6k Jan 05, 2023
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022