Implicit Deep Adaptive Design (iDAD)

Related tags

Deep Learningidad
Overview

Implicit Deep Adaptive Design (iDAD)

This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods'.

@article{ivanova2021implicit,
  title={Implicit Deep Adaptive Design: Policy-Based Experimental Design without Likelihoods},
  author={Ivanova, Desi R. and Foster, Adam and Kleinegesse, Steven and Gutmann, Michael and Rainforth, Tom},
  journal={Advances in Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Computing infrastructure requirements

We have tested this codebase on Linux (Ubuntu x86_64) and MacOS (Big Sur v11.2.3) with Python 3.8. To train iDAD networks, we recommend the use of a GPU. We used one GeForce RTX 3090 GPU on a machine with 126 GiB of CPU memory and 40 CPU cores.

Installation

  1. Ensure that Python and conda are installed.
  2. Create and activate a new conda virtual environment as follows
conda create -n idad_code
conda activate idad_code
  1. Install the correct version of PyTorch, following the instructions at pytorch.org. For our experiments we used torch==1.8.0 with CUDA version 11.1.
  2. Install the remaining package requirements using pip install -r requirements.txt.
  3. Install the torchsde package from its repository: pip install git+https://github.com/google-research/torchsde.git.

MLFlow

We use mlflow to log metric and store network parameters. Each experiment run is stored in a directory mlruns which will be created automatically. Each experiment is assigned a numerical and each run gets a unique . The iDAD networks will be saved in ./mlruns/ / /artifacts , which will be printed at the end of each training run.

Location Finding Experiment

To train an iDAD network with the InfoNCE bound to locate 2 sources in 2D, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 location_finding.py \
    --num-steps 100000 \
    --num-experiments=10 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 64 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0001 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 location_finding.py \
    --num-steps 100000 \
    --physical-dim 2 \
    --num-sources 2 \
    --lr 0.0005 \
    --num-experiments 10 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks eun the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_locfin_nontrainable.py \
    --policy random \
    --physical-dim 2 \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_locfin_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --physical-dim 2 \
    --lr 0.001 \
    --num-steps 5000\
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

Pharmacokinetic Experiment

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, using the approach in the paper, execute the command

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator NWJ \
    --gamma 0.5 \
    --device <DEVICE>

To run the static MINEBED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.001 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator NWJ \
    --device <DEVICE>

To run the static SG-BOED baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0005 \
    --num-experiments 5 \
    --encoding-dim 8 \
    --hidden-dim 512 \
    --design-arch static \
    --critic-arch cat \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the adaptive (explicit likelihood) DAD baseline, use the following

python3 pharmacokinetic.py \
    --num-steps 100000 \
    --lr 0.0001 \
    --num-experiments 5 \
    --encoding-dim 32 \
    --hidden-dim 512 \
    --mi-estimator sPCE \
    --design-arch sum \
    --device <DEVICE>

To evaluate the resulting networks run the following command

python3 eval_sPCE.py --experiment-id <ID>

To evaluate a random design baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy random \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To evaluate an equal interval baseline (requires no pre-training):

python3 baselines_pharmaco_nontrainable.py \
    --policy equal_interval \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

To run the variational baseline (note: it takes a very long time), run:

python3 baselines_pharmaco_variational.py \
    --num-histories 128 \
    --num-experiments 10 \
    --lr 0.001 \
    --num-steps 5000 \
    --device <DEVICE>

Copy path_to_artifact and pass it to the evaluation script:

python3 eval_sPCE_from_source.py \
    --path-to-artifact <path_to_artifact> \
    --num-experiments-to-perform 5 10 \
    --device <DEVICE>

SIR experiment

For the SIR experiments, please first generate an initial training set and a test set:

python3 epidemic_simulate_data.py \
    --num-samples=100000 \
    --device <DEVICE>

To train an iDAD network with the InfoNCE bound, using the approach in the paper, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator InfoNCE \
    --design-transform ts \
    --device <DEVICE>

To train an iDAD network with the NWJ bound, execute the command

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.0005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --mi-estimator NWJ \
    --design-transform ts \
    --device <DEVICE>

To run the static SG-BOED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator InfoNCE \
    --device <DEVICE>

To run the static MINEBED baseline, run

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch static \
    --critic-arch cat \
    --design-transform iid \
    --mi-estimator NWJ \
    --device <DEVICE>

To train a critic with random designs (to evaluate the random design baseline):

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.005 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch random \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

To train a critic with equal interval designs, which is then used to evaluate the equal interval baseline, run the following

python3 epidemic.py \
    --num-steps 100000 \
    --num-experiments 5 \
    --lr 0.001 \
    --hidden-dim 512 \
    --encoding-dim 32 \
    --design-arch equal_interval \
    --critic-arch cat \
    --design-transform iid \
    --device <DEVICE>

Finally, to evaluate the different methods, run

python3 eval_epidemic.py \
    --experiment-id <ID> \
    --device <DEVICE>
Owner
Desi
Desi
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection

TextBPN Adaptive Boundary Proposal Network for Arbitrary Shape Text Detection; Accepted by ICCV2021. Note: The complete code (including training and t

S.X.Zhang 84 Dec 13, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
Code for ACL 21: Generating Query Focused Summaries from Query-Free Resources

marge This repository releases the code for Generating Query Focused Summaries from Query-Free Resources. Please cite the following paper [bib] if you

Yumo Xu 28 Nov 10, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
audioLIME: Listenable Explanations Using Source Separation

audioLIME This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music info

Institute of Computational Perception 27 Dec 01, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023