Optimize Trading Strategies Using Freqtrade

Overview

Optimize trading strategy using Freqtrade

Short demo on building, testing and optimizing a trading strategy using Freqtrade.

The DevBootstrap YouTube screencast supporting this repo is here. Enjoy! :)

Alias Docker-Compose Command

First, I recommend to alias docker-compose to dc and docker-compose run --rm "$@" to dcr to save of typing.

Put this in your ~/.bash_profile file so that its always aliased like this!

alias dc=docker-compose
dcr() { docker-compose run --rm "$@"; }

Now run source ~/.bash_profile.

Installing Freqtrade

Install and run via Docker.

Now install the necessary dependencies to run Freqtrade:

mkdir ft_userdata
cd ft_userdata/
# Download the dc file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml

# Pull the freqtrade image
dc pull

# Create user directory structure
dcr freqtrade create-userdir --userdir user_data

# Create configuration - Requires answering interactive questions
dcr freqtrade new-config --config user_data/config.json

NOTE: Any freqtrade commands are available by running dcr freqtrade <command> <optional arguments>. So the only difference to run the command via docker-compose is to prefix the command with our new alias dcr (which runs docker-compose run --rm "$@" ... see above for details.)

Config Bot

If you used the new-config sub-command (see above) when installing the bot, the installation script should have already created the default configuration file (config.json) for you.

The params that we will set to note are (from config.json). This allows all the available balance to be distrubuted accross all possible trades. So in dry run mode we have a default paper money balance of 1000 (can be changed using dry_run_wallet param) and if we set to have a max of 10 trades then Freqtrade would distribute the funds accrosss all 10 trades aprroximatly equally (1000 / 10 = 100 / trade).

"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,

The above are used for Dry Runs and is the 'Dynamic Stake Amount'. For live trading you might want to change this. For example, only allow bot to trade 20% of excahnge account funds and cancel open orders on exit (if market goes crazy!)

"tradable_balance_ratio": 0.2,
"cancel_open_orders_on_exit": true

For details of all available parameters, please refer to the configuration parameters docs.

Create a Strategy

So I've created a 'BBRSINaiveStrategy' based on RSI and Bollenger Bands. Take a look at the file bbrsi_naive_strategy.py file for details.

To tell your instance of Freqtrade about this strategy, open your docker-compose.yml file and update the strategy flag (last flag of the command) to --strategy BBRSINaiveStrategy

For more details on Strategy Customization, please refer to the Freqtrade Docs

Remove past trade data

If you have run the bot already, you will need to clear out any existing dry run trades from the database. The easiest way to do this is to delete the sqlite database by running the command rm user_data/tradesv3.sqlite.

Sandbox / Dry Run

As a quick sanity check, you can now immediately start the bot in a sandbox mode and it will start trading (with paper money - not real money!).

To start trading in sandbox mode, simply start the service as a daemon using Docker Compose, like so and follow the log trail as follows:

dc up -d
dc ps
dc logs -f

Setup a pairs file

We will use Binance so we create a data directory for binance and copy our pairs.json file into that directory:

mkdir -p user_data/data/binance
cp pairs.json user_data/data/binance/.

Now put whatever pairs you are interested to download into the pairs.json file. Take a look at the pairs.json file included in this repo.

Download Data

Now that we have our pairs file in place, lets download the OHLCV data for backtesting our strategy.

dcr freqtrade download-data --exchange binance -t 15m

List the available data using the list-data sub-command:

dcr freqtrade list-data --exchange binance

Manually inspect the json files to examine the data is as expected (i.e. that it contains the expected OHLCV data requested).

List the available data for backtesting

Note to list the available data you need to pass the --data-format-ohlcv jsongz flag as below:

dcr freqtrade list-data --exchange binance

Backtest

Now we have the data for 1h and 4h OHLCV data for our pairs lets Backtest this strategy:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades  --stake-amount 100 -s BBRSINaiveStrategy -i 15m

For details on interpreting the result, refer to 'Understading the backtesting result'

Plotting

Plot the results to see how the bot entered and exited trades over time. Remember to change the Docker image being referenced in the docker-compose file to freqtradeorg/freqtrade:develop_plot before running the below command.

Note that the plot_config that is contained in the strategy will be applied to the chart.

dcr freqtrade plot-dataframe --strategy BBRSINaiveStrategy -p ALGO/USDT -i 15m

Once the plot is ready you will see the message Stored plot as /freqtrade/user_data/plot/freqtrade-plot-ALGO_USDT-15m.html which you can open in a browser window.

Optimize

To optimize the strategy we will use the Hyperopt module of freqtrade. First up we need to create a new hyperopt file from a template:

dcr freqtrade new-hyperopt --hyperopt BBRSIHyperopt

Now add desired definitions for buy/sell guards and triggers to the Hyperopt file. Then run the optimization like so (NOTE: set the time interval and the number of epochs to test using the -i and -e flags:

dcr freqtrade hyperopt --hyperopt BBRSIHyperopt --hyperopt-loss SharpeHyperOptLoss --strategy BBRSINaiveStrategy -i 15m

Update Strategy

Apply the suggested optimized results from the Hyperopt to the strategy. Either replace the current strategy or create a new 'optimized' strategy.

Backtest

Now we have updated our strategy based on the result from the hyperopt lets run a backtest again:

dcr freqtrade backtesting --datadir user_data/data/binance --export trades --stake-amount 100 -s BBRSIOptimizedStrategy -i 15m

Sandbox / Dry Run

Before you run the Dry Run, don't forget to check your local config.json file is configured. Particularly the dry_run is true, the dry_run_wallet is set to something reasonable (like 1000 USDT) and that the timeframe is set to the same that you have used when building and optimizing your strategy!

"max_open_trades": 10,
"stake_currency": "USDT",
"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"timeframe": "15min",
"dry_run": true,
"dry_run_wallet": 1000,

View Dry Run via Freq UI

For use with docker you will need to enable the api server in the Freqtrade config and set listen_ip_address to "0.0.0.0", and also set the username & password so that you can login like so:

...

"api_server": {
  "enabled": true,
  "listen_ip_address": "0.0.0.0",
  "username": "Freqtrader",
  "password": "secretpass!",
P
...

In the docker-compose.yml file also map the ports like so:

ports:
  - "127.0.0.1:8080:8080"

Then you can access the Freq UI via a browser at http://127.0.0.1:8080/. You can also access and control the bot via a REST API too!

Owner
DevBootstrap
Full Stack Blockchain Developer Tutorials
DevBootstrap
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
A generalized framework for prototyping full-stack cooperative driving automation applications under CARLA+SUMO.

OpenCDA OpenCDA is a SIMULATION tool integrated with a prototype cooperative driving automation (CDA; see SAE J3216) pipeline as well as regular autom

UCLA Mobility Lab 726 Dec 29, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
Official PyTorch implementation of Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations

Synergies Between Affordance and Geometry: 6-DoF Grasp Detection via Implicit Representations Zhenyu Jiang, Yifeng Zhu, Maxwell Svetlik, Kuan Fang, Yu

UT-Austin Robot Perception and Learning Lab 63 Jan 03, 2023
A simple and useful implementation of LPIPS.

lpips-pytorch Description Developing perceptual distance metrics is a major topic in recent image processing problems. LPIPS[1] is a state-of-the-art

So Uchida 121 Dec 24, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
A curated list of awesome Machine Learning frameworks, libraries and software.

Awesome Machine Learning A curated list of awesome machine learning frameworks, libraries and software (by language). Inspired by awesome-php. If you

Joseph Misiti 57.1k Jan 03, 2023
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
This is the research repository for Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition.

Vid2Doppler: Synthesizing Doppler Radar Data from Videos for Training Privacy-Preserving Activity Recognition This is the research repository for Vid2

Future Interfaces Group (CMU) 26 Dec 24, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022