Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

Related tags

Deep LearningVRDP
Overview

VRDP (NeurIPS 2021)

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language
Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Joshua B. Tenenbaum, and Chuang Gan

image

More details can be found at the Project Page.

If you find our work useful in your research please consider citing our paper:

@inproceedings{ding2021dynamic,
  author = {Ding, Mingyu and Chen, Zhenfang and Du, Tao and Luo, Ping and Tenenbaum, Joshua B and Gan, Chuang},
  title = {Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language},
  booktitle = {Advances In Neural Information Processing Systems},
  year = {2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.3 or higher
  • All relative packages are covered by Miniconda
  • Both CPUs and GPUs are supported

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website

  • Transform videos into ".png" frames with ffmpeg.

  • Organize the data as shown below.

    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    
  • We also provide data for physics learning and program execution in Google Drive. You can download them optionally and put them in the ./data/ folder.

  • Download the processed data executor_data.zip for the executor. Put it in and unzip it to ./executor/data/.

Get Object Dictionaries (Concepts and Trajectories)

Download the object proposals from the region proposal network and follow the Step-by-step Training in DCL to get object concepts and trajectories.

The above process includes:

  • trajectory extraction
  • concept learning
  • trajectory refinement

Or you can download our extracted object dictionaries object_dicts.zip directly from Google Drive.

Learning

1. Differentiable Physics Learning

After we get the above object dictionaries, we learn physical parameters from object properties and trajectories.

cd dynamics/
python3 learn_dynamics.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output object physical parameters object_dicts_with_physics.zip can be downloaded from Google Drive.

2. Physics Simulation (counterfactual)

Physical simulation using learned physical parameters.

cd dynamics/
python3 physics_simulation.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output simulated trajectories/events object_simulated.zip can be downloaded from Google Drive.

3. Physics Simulation (predictive)

Correction of long-range prediction according to video observations.

cd dynamics/
python3 refine_prediction.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output refined trajectories/events object_updated_results.zip can be downloaded from Google Drive.

Evaluation

After we get the final trajectories/events, we perform the neuro-symbolic execution and evaluate the performance on the validation set.

cd executor/
python3 evaluation.py

The test json file for evaluation on evalAI can be generated by

cd executor/
python3 get_results.py

The Generalized Clerver Dataset (counterfactual_mass)

Examples

  • Predictive question image
  • Counterfactual question image

Acknowledgements

For questions regarding VRDP, feel free to post here or directly contact the author ([email protected]).

Owner
Mingyu Ding
Mingyu Ding
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
A chemical analysis of lipophilicities & molecule drawings including ML

A chemical analysis of lipophilicity & molecule drawings including a bit of ML analysis. This is a simple project that includes two Jupyter files (one

Aurimas A. Nausėdas 7 Nov 22, 2022
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
A Number Recognition algorithm

Paddle-VisualAttention Results_Compared SVHN Dataset Methods Steps GPU Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Ac

1 Nov 12, 2021
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification (ICCV2021)

CM-NAS Official Pytorch code of paper CM-NAS: Cross-Modality Neural Architecture Search for Visible-Infrared Person Re-Identification in ICCV2021. Vis

JDAI-CV 40 Nov 25, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022