Python module for machine learning time series:

Overview

Travis Pypi PythonVersion CircleCI Coveralls Downloads

seglearn

Seglearn is a python package for machine learning time series or sequences. It provides an integrated pipeline for segmentation, feature extraction, feature processing, and final estimator. Seglearn provides a flexible approach to multivariate time series and related contextual (meta) data for classification, regression, and forecasting problems. Support and examples are provided for learning time series with classical machine learning and deep learning models. It is compatible with scikit-learn.

Documentation

Installation documentation, API documentation, and examples can be found on the documentation.

Dependencies

seglearn is tested to work under Python 3.5. The dependency requirements are based on the last scikit-learn release:

  • scipy(>=0.17.0)
  • numpy(>=1.11.0)
  • scikit-learn(>=0.21.3)

Additionally, to run the examples, you need:

  • matplotlib(>=2.0.0)
  • keras (>=2.1.4) for the neural network examples
  • pandas

In order to run the test cases, you need:

  • pytest

The neural network examples were tested on keras using the tensorflow-gpu backend, which is recommended.

Installation

seglearn-learn is currently available on the PyPi's repository and you can install it via pip:

pip install -U seglearn

or if you use python3:

pip3 install -U seglearn

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/dmbee/seglearn.git
cd seglearn
pip install .

Or install using pip and GitHub:

pip install -U git+https://github.com/dmbee/seglearn.git

Testing

After installation, you can use pytest to run the test suite from seglearn's root directory:

pytest

Change Log

Version history can be viewed in the Change Log.

Development

The development of this scikit-learn-contrib is in line with the one of the scikit-learn community. Therefore, you can refer to their Development Guide.

Please submit new pull requests on the dev branch with unit tests and an example to demonstrate any new functionality / api changes.

Citing seglearn

If you use seglearn in a scientific publication, we would appreciate citations to the following paper:

@article{arXiv:1803.08118,
author  = {David Burns, Cari Whyne},
title   = {Seglearn: A Python Package for Learning Sequences and Time Series},
journal = {arXiv},
year    = {2018},
url     = {https://arxiv.org/abs/1803.08118}
}

If you use the seglearn test data in a scientific publication, we would appreciate citations to the following paper:

@article{arXiv:1802.01489,
author  = {David Burns, Nathan Leung, Michael Hardisty, Cari Whyne, Patrick Henry, Stewart McLachlin},
title   = {Shoulder Physiotherapy Exercise Recognition: Machine Learning the Inertial Signals from a Smartwatch},
journal = {arXiv},
year    = {2018},
url     = {https://arxiv.org/abs/1802.01489}
}
Owner
David Burns
Orthopaedic Surgery Resident PhD Candidate, Biomedical Engineering Sunnybrook Research Institute University of Toronto, Canada
David Burns
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

Generator of Rad Names from Decent Paper Acronyms

264 Nov 08, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
Turns your machine learning code into microservices with web API, interactive GUI, and more.

Turns your machine learning code into microservices with web API, interactive GUI, and more.

Machine Learning Tooling 2.8k Jan 02, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Provide an input CSV and a target field to predict, generate a model + code to run it.

automl-gs Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learn

Max Woolf 1.8k Jan 04, 2023
Coursera Machine Learning - Python code

Coursera Machine Learning This repository contains python implementations of certain exercises from the course by Andrew Ng. For a number of assignmen

Jordi Warmenhoven 859 Dec 10, 2022
Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale.

Model Search Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers sp

AriesTriputranto 1 Dec 13, 2021
Stats, linear algebra and einops for xarray

xarray-einstats Stats, linear algebra and einops for xarray ⚠️ Caution: This project is still in a very early development stage Installation To instal

ArviZ 30 Dec 28, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Crate will be the hub of various ML projects which will be the resources for the ML enthusiasts! Open Source Program: SWOC 2021 and JWOC 2022.

Machine Learning Loot Crate 💻 🧰 🔴 Welcome contributors! As we all know the BGMI Loot Crate comes with so many resources for the gamers, this ML Cra

Abhishek Sharma 89 Dec 28, 2022
Microsoft 5.6k Jan 07, 2023
Machine-learning-dell - Repositório com as atividades desenvolvidas no curso de Machine Learning

📚 Descrição Neste curso da Dell aprofundamos nossos conhecimentos em Machine Learning. 🖥️ Aulas (Em curso) 1.1 - Python aplicado a Data Science 1.2

Claudia dos Anjos 1 Jan 05, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Stox A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict

Stox 31 Dec 16, 2022
An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Background This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representation

Shauli Ravfogel 4 Apr 13, 2022
Getting Profit and Loss Make Easy From Binance

Getting Profit and Loss Make Easy From Binance I have been in Binance Automated Trading for some time and have generated a lot of transaction records,

17 Dec 21, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022