PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

Related tags

Deep LearningSelfReg
Overview

SelfReg

PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.09841)

Description

method An overview of our proposed SelfReg. Here, we propose to use the self-supervised (in-batch) contrastive losses to regularize the model to learn domain-invariant representations. These losses regularize the model to map the representations of the "same-class" samples close together in the embedding space. We compute the following two dissimilarities in the embedding space: (i) individualized and (ii) heterogeneous self-supervised dissimilarity losses. We further use the stochastic weight average (SWA) technique and the inter-domain curriculum learning (IDCL) to optimize gradients in conflict directions.

tsne Visualizations by t-SNE for (a) baseline (no DG techniques), (b) RSC, and (c) ours. For better understanding, we also provide sample images of house from all target domains. Note that we differently color-coded each points according to its class. (Data: PACS)

Computational Efficiency of IDCL (Inter-domain Curriculum Learning)

Backbone Training Strategy Training Time(s)
ResNet-18 Baseline (classic training strategy) 1556.8
ResNet-18 IDCL strategy 1283.5

We used one V100 GPU for model training. The training time in above table is the time it took to train all domains independently. The training time of the IDCL is 1283.5 seconds, equivalent to 82.4% of baseline on PACS.

Dependency

  • python >= 3.6
  • pytorch >= 1.7.0
  • torchvision >= 0.8.1
  • jupyter notebook
  • gdown

How to Use

  1. cd codes/ and sh download.sh to download PACS dataset.
  2. Open train.ipynb and Run All.
  3. Make sure that the training is running well in the last cell.
  4. Check the results stored in path codes/resnet18/{save_name}/ when the training is completed.

Test trained SelfReg ResNet18 model

To test a ResNet18, you can download pretrained weights (SelfReg model) with this link.

These weights are wrapped torch.optim.swa_utils.AveragedModel() (SWA implementation of PyTorch).

Backbone Target Domain Acc %
ResNet-18 Photo 96.83
ResNet-18 Art Painting 83.15
ResNet-18 Cartoon 79.61
ResNet-18 Sketch 78.90

Benchmark of SelfReg in DomainBed

domainbed

Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022