Winners of DrivenData's Overhead Geopose Challenge

Overview



Banner Image

Images shown are from the public Urban Semantic 3D Dataset, provided courtesy of DigitalGlobe

Goal of the Competition

Overhead satellite imagery provides critical, time-sensitive information for use in arenas such as disaster response, navigation, and security. Most current methods for using aerial imagery assume images are taken from directly overhead, known as near-nadir. However, the first images available are often taken from an angle — they are oblique. Effects from these camera orientations complicate useful tasks such as change detection, vision-aided navigation, and map alignment.

In this challenge, participants made satellite imagery taken from a significant angle more useful for time-sensitive applications such as disaster and emergency response

What's in This Repository

This repository contains code from winning competitors in the Overhead Geopose Challenge.

Winning code for other DrivenData competitions is available in the competition-winners repository.

Winning Submissions

Prediction Contest

All of the models below build on the solution provided in the benchmark blog post: Overhead Geopose Challenge - Benchmark. Additional solution details can be found in the reports folder inside the directory for each submission.

The weights for each winning model can be downloaded from the National Geospatial-Intelligence Agency's (NGA's) DataPort page.

Place Team or User Public Score Private Score Summary of Model
1 selim_sef 0.902184 0.902459 An EfficientNet V2 L encoder is used instead of the Resnet34 encoder because it has a huge capacity and is less prone to overfitting. The decoder is a UNet with more filters and additional convolution blocks for better handling of fine-grained details. MSE loss would produce imbalance for different cities, depending on building heights. The model is trained with an R2 loss for AGL/MAG outputs, which reflects the final competition metric and is more robust to noisy training data.
2 bloodaxe 0.889955 0.891393 I’ve trained a bunch of UNet-like models and averaged their predictions. Sounds simple, yet I used quite heavy encoders (B6 & B7) and custom-made decoders to produce very accurate height map predictions at original resolution. Another crucial part of the solution was extensive custom data augmentation for height, orientation, scale, GSD, and image RGB values.
3 o__@ 0.882882 0.882801 I ensembled the VFlow-UNet model using a large input resolution and a large backbone without downsampling. Better results were obtained when the model was trained on all images from the training set. The test set contains images of the same location as the images in the training set. This overlap was identified by image matching to improve the prediction results.
4 kbrodt 0.872775 0.873057 The model uses a UNet architecture with various encoders (efficientnet-b{6,7} and senet154) and has only one above-ground level (AGL) head and two heads in the bottleneck for scale and angle. The features are a random 512x512 crop of an aerial image, the city's one hot encoding, and ground sample distance (GSD). The model is trained with mean squared error (MSE) loss function for all targets (AGL, scale, angle) using AdamW optimizer with 1e-4 learning rate.

Model Write-up Bonus

Prediction rank Team or User Public Score Private Score Summary of Model
2 bloodaxe 0.889955 0.891393 See the "Prediction Contest" section above
5 chuchu 0.856847 0.855636 We conducted an empirical upper bound analysis, which suggested that the main errors are from height prediction and the rest are from angle prediction. To overcome the bottlenecks we proposed HR-VFLOW, which takes HRNet as backbone and adopts simple multi-scale fusion as multi-task decoders to predict height, magnitude, angle, and scale simultaneously. To handle the height variance, we first pretrained the model on all four cities and then transferred the pretrained model to each specific city for better city-wise performance.
7 vecxoz 0.852948 0.851828 First, I implemented training with automatic mixed precision in order to speed up training and facilitate experiments with the large architectures. Second, I implemented 7 popular decoder architectures and conducted extensive preliminary research of different combinations of encoders and decoders. For the most promising combinations I ran long training for at least 200 epochs to study best possible scores and training dynamics. Third, I implemented an ensemble using weighted average for height and scale target and circular average for angle target.

Approved for public release, 21-943

Owner
DrivenData
Data science competitions for social good.
DrivenData
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Richard Wang 443 Dec 06, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
On the Adversarial Robustness of Visual Transformer

On the Adversarial Robustness of Visual Transformer Code for our paper "On the Adversarial Robustness of Visual Transformers"

Rulin Shao 35 Dec 14, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
Clean Machine Learning, a Coding Kata

Kata: Clean Machine Learning From Dirty Code First, open the Kata in Google Colab (or else download it) You can clone this project and launch jupyter-

Neuraxio 13 Nov 03, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
Gym environments used in the paper: "Developmental Reinforcement Learning of Control Policy of a Quadcopter UAV with Thrust Vectoring Rotors"

gym_multirotor Gym to train reinforcement learning agents on UAV platforms Quadrotor Tiltrotor Requirements This package has been tested on Ubuntu 18.

Aditya M. Deshpande 19 Dec 29, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
ROS Basics and TurtleSim

Waypoint Follower Anna Garverick This package draws given waypoints, then waits for a service call with a start position to send the turtle to each wa

Anna Garverick 1 Dec 13, 2021
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Measuring if attention is explanation with ROAR

NLP ROAR Interpretability Official code for: Evaluating the Faithfulness of Importance Measures in NLP by Recursively Masking Allegedly Important Toke

Andreas Madsen 19 Nov 13, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022