1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

Overview

SIIM-COVID19-Detection

Alt text

Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge.

1.INSTALLATION

  • Ubuntu 18.04.5 LTS
  • CUDA 10.2
  • Python 3.7.9
  • python packages are detailed separately in requirements.txt
$ conda create -n envs python=3.7.9
$ conda activate envs
$ conda install -c conda-forge gdcm
$ pip install -r requirements.txt
$ pip install git+https://github.com/ildoonet/pytorch-gradual-warmup-lr.git

2.DATASET

2.1 SIIM COVID 19 DATASET

  • download competition dataset at link then extract to ./dataset/siim-covid19-detection
$ cd src/prepare
$ python dicom2image_siim.py
$ python kfold_split.py
$ prepare_siim_annotation.py                        # effdet and yolo format
$ cp -r ../../dataset/siim-covid19-detection/images ../../dataset/lung_crop/.
$ python prepare_siim_lung_crop_annotation.py

2.2 EXTERNAL DATASET

  • download pneumothorax dataset at link then extract to ./dataset/external_dataset/pneumothorax/dicoms
  • download pneumonia dataset at link then extract to ./dataset/external_dataset/rsna-pneumonia-detection-challenge/dicoms
  • download vinbigdata dataset at link then extract to ./dataset/external_dataset/vinbigdata/dicoms
  • download chest14 dataset at link then extract to ./dataset/external_dataset/chest14/images
  • download chexpert high-resolution dataset at link or then extract to ./dataset/external_dataset/chexpert/train
  • download padchest dataset at link or then extract to ./dataset/external_dataset/padchest/images
    most of the images in bimcv and ricord overlap with siim covid trainset and testset. To avoid data-leak when training, I didn't use them. You can use script
$ cd src/prepare
$ python dicom2image_pneumothorax.py
$ python dicom2image_pneumonia.py
$ python prepare_pneumonia_annotation.py      # effdet and yolo format
$ python dicom2image_vinbigdata.py
$ python prepare_vinbigdata.py
$ python refine_data.py                       # remove unused file in chexpert + chest14 + padchest dataset
$ python resize_padchest_pneumothorax.py

dataset structure should be ./dataset/dataset_structure.txt

3.SOLUTION SUMMARY

Alt text

4.TRAIN MODEL

4.1 Classification

4.1.1 Multi head classification + segmentation

  • Stage1
$ cd src/classification_aux
$ bash train_chexpert_chest14.sh              #Pretrain backbone on chexpert + chest14
$ bash train_rsnapneu.sh                      #Pretrain rsna_pneumonia
$ bash train_siim.sh                          #Train siim covid19
  • Stage2: Generate soft-label for classification head and mask for segmentation head.
    Output: soft-label in ./pseudo_csv/[source].csv and public test masks in ./prediction_mask/public_test/masks
$ bash generate_pseudo_label.sh [checkpoints_dir]
  • Stage3: Train model on trainset + public testset, load checkpoint from previous round
$ bash train_pseudo.sh [previous_checkpoints_dir] [new_checkpoints_dir]

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

  • For final submission
$ bash generate_pseudo_label.sh checkpoints_v3
$ bash train_pseudo.sh checkpoints_v3 checkpoints_v4
  • For evaluation
$ CUDA_VISIBLE_DEVICES=0 python evaluate.py --cfg configs/xxx.yaml --num_tta xxx

[email protected] 4 classes: negative, typical, indeterminate, atypical

SeR152-Unet EB5-Deeplab EB6-Linknet EB7-Unet++ Ensemble
w/o TTA/8TTA 0.575/0.584 0.583/0.592 0.580/0.587 0.589/0.595 0.595/0.598

8TTA: (orig, center-crop 80%)x(None, hflip, vflip, hflip & vflip). In final submission, I use 4.1.2 lung detector instead of center-crop 80%

4.1.2 Lung Detector-YoloV5

I annotated the train data(6334 images) using LabelImg and built a lung localizer. I noticed that increasing input image size improves the modeling performance and lung detector helps the model to reduce background noise.

$ cd src/detection_lung_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train.sh
Fold0 Fold1 Fold2 Fold3 Fold4 Average
[email protected]:0.95 0.921 0.931 0.926 0.923 0.922 0.9246
[email protected] 0.997 0.998 0.997 0.996 0.998 0.9972

4.2 Opacity Detection

Rounds of pseudo labeling (stage2) and retraining (stage3) were repeated until the score on public LB didn't improve.

4.2.1 YoloV5x6 768

  • Stage1:
$ cd src/detection_yolov5
$ cd weights && bash download_coco_weights.sh && cd ..
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19 boxes, load warmup checkpoint

4.2.2 EfficientDet D7 768

  • Stage1:
$ cd src/detection_efffdet
$ bash train_rsnapneu.sh          #pretrain with rsna_pneumonia
$ bash train_siim.sh              #train with siim covid19 dataset, load rsna_pneumonia checkpoint
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ bash warmup_ext_dataset.sh      #train with pseudo labeling (public-test, padchest, pneumothorax, vin) + rsna_pneumonia
$ bash train_final.sh             #train siim covid19, load warmup checkpoint

4.2.3 FasterRCNN FPN 768 & 1024

  • Stage1: train backbone of model with chexpert + chest14 -> train model with rsna pneummonia -> train model with siim, load rsna pneumonia checkpoint
$ cd src/detection_fasterrcnn
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python train_chexpert_chest14.py --steps 0 1 --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_rsnapneu.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet200d.yaml --folds 0 1 2 3 4 --SEED 123
$ CUDA_VISIBLE_DEVICES=0 python train_siim.py --cfg configs/resnet101d.yaml --folds 0 1 2 3 4 --SEED 123

Note: Change SEED if training script runs into issue related to augmentation (boundingbox area=0) and comment/uncomment the following code if training script runs into issue related to resource limit

import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (8192, rlimit[1]))
  • Stage2: Generate pseudo label (boxes)
$ bash generate_pseudo_label.sh

Jump to step 4.2.4 Ensembling + Pseudo labeling

  • Stage3:
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python warmup_ext_dataset.py --cfg configs/resnet101d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet200d.yaml
$ CUDA_VISIBLE_DEVICES=0 python train_final.py --cfg configs/resnet101d.yaml

4.2.4 Ensembling + Pseudo labeling

Keep images that meet the conditions: negative prediction < 0.3 and maximum of (typical, indeterminate, atypical) predicion > 0.7. Then choose 2 boxes with the highest confidence as pseudo labels for each image.

Note: This step requires at least 128 GB of RAM

$ cd ./src/detection_make_pseudo
$ python make_pseudo.py
$ python make_annotation.py            

4.2.5 Detection Performance

YoloV5x6 768 EffdetD7 768 F-RCNN R200 768 F-RCNN R101 1024
[email protected] TTA 0.580 0.594 0.592 0.596

Final result: Public LB/Private LB: 0.658/0.635

5.FINAL KERNEL

siim-covid19-2021
demo notebook to visualize output of models

6.AWESOME RESOURCES

Pytorch
PyTorch Image Models
Segmentation models
EfficientDet
YoloV5
FasterRCNN FPN
Albumentations
Weighted boxes fusion

Owner
Nguyen Ba Dung
https://www.linkedin.com/in/dungnb1333/
Nguyen Ba Dung
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
Slice a single image into multiple pieces and create a dataset from them

OpenCV Image to Dataset Converter Slice a single image of Persian digits into mu

Meysam Parvizi 14 Dec 29, 2022
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.

Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless. This is the official Roboflow python package that interfaces with the Roboflow API.

Roboflow 52 Dec 23, 2022
a micro OCR network with 0.07mb params.

MicroOCR a micro OCR network with 0.07mb params. Layer (type) Output Shape Param # Conv2d-1 [-1, 64, 8,

william 29 Aug 06, 2022
DouZero is a reinforcement learning framework for DouDizhu - 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

Kwai 3.1k Jan 05, 2023
An interactive document scanner built in Python using OpenCV

The scanner takes a poorly scanned image, finds the corners of the document, applies the perspective transformation to get a top-down view of the document, sharpens the image, and applies an adaptive

Kushal Shingote 1 Feb 12, 2022
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
Papers, Datasets, Algorithms, SOTA for STR. Long-time Maintaining

Scene Text Recognition Recommendations Everythin about Scene Text Recognition SOTA • Papers • Datasets • Code Contents 1. Papers 2. Datasets 2.1 Synth

Deep Learning and Vision Computing Lab, SCUT 197 Jan 05, 2023
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
Deep LearningImage Captcha 2

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 117 Dec 28, 2022
第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)第一名;仅采用densenet识别图中文字

OCR 第一届西安交通大学人工智能实践大赛(2018AI实践大赛--图片文字识别)冠军 模型结果 该比赛计算每一个条目的f1score,取所有条目的平均,具体计算方式在这里。这里的计算方式不对一句话里的相同文字重复计算,故f1score比提交的最终结果低: - train val f1score 0

尹畅 441 Dec 22, 2022
Generic framework for historical document processing

dhSegment dhSegment is a tool for Historical Document Processing. Its generic approach allows to segment regions and extract content from different ty

Digital Humanities Laboratory 343 Dec 24, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Toolbox for OCR post-correction

Ochre Ochre is a toolbox for OCR post-correction. Please note that this software is experimental and very much a work in progress! Overview of OCR pos

National Library of the Netherlands / Research 117 Nov 10, 2022
OCR of Chicago 1909 Renumbering Plan

Requirements: Python 3 (probably at least 3.4) pipenv (pip3 install pipenv) tesseract (brew install tesseract, at least if you have a mac and homebrew

ted whalen 2 Nov 21, 2021
a Deep Learning Framework for Text

DeLFT DeLFT (Deep Learning Framework for Text) is a Keras and TensorFlow framework for text processing, focusing on sequence labelling (e.g. named ent

Patrice Lopez 350 Dec 19, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022