Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Overview

Benchmarking nearest neighbors

Build Status

Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far there has not been a lot of empirical attempts at comparing approaches in an objective way.

This project contains some tools to benchmark various implementations of approximate nearest neighbor (ANN) search for different metrics. We have pregenerated datasets (in HDF5) formats and we also have Docker containers for each algorithm. There's a test suite that makes sure every algorithm works.

Evaluated

Data sets

We have a number of precomputed data sets for this. All data sets are pre-split into train/test and come with ground truth data in the form of the top 100 neighbors. We store them in a HDF5 format:

Dataset Dimensions Train size Test size Neighbors Distance Download
DEEP1B 96 9,990,000 10,000 100 Angular HDF5 (3.6GB)
Fashion-MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
GIST 960 1,000,000 1,000 100 Euclidean HDF5 (3.6GB)
GloVe 25 1,183,514 10,000 100 Angular HDF5 (121MB)
GloVe 50 1,183,514 10,000 100 Angular HDF5 (235MB)
GloVe 100 1,183,514 10,000 100 Angular HDF5 (463MB)
GloVe 200 1,183,514 10,000 100 Angular HDF5 (918MB)
Kosarak 27983 74,962 500 100 Jaccard HDF5 (2.0GB)
MNIST 784 60,000 10,000 100 Euclidean HDF5 (217MB)
NYTimes 256 290,000 10,000 100 Angular HDF5 (301MB)
SIFT 128 1,000,000 10,000 100 Euclidean HDF5 (501MB)
Last.fm 65 292,385 50,000 100 Angular HDF5 (135MB)

Results

Interactive plots can be found at http://ann-benchmarks.com. These are all as of December 2021, running all benchmarks on a r5.4xlarge machine on AWS with --parallelism 7:

glove-100-angular

glove-100-angular

sift-128-euclidean

glove-100-angular

fashion-mnist-784-euclidean

fashion-mnist-784-euclidean

lastfm-64-dot

lastfm-64-dot

nytimes-256-angular

nytimes-256-angular

glove-25-angular

glove-25-angular

Install

The only prerequisite is Python (tested with 3.6) and Docker.

  1. Clone the repo.
  2. Run pip install -r requirements.txt.
  3. Run python install.py to build all the libraries inside Docker containers (this can take a while, like 10-30 minutes).

Running

  1. Run python run.py (this can take an extremely long time, potentially days)
  2. Run python plot.py or python create_website.py to plot results.

You can customize the algorithms and datasets if you want to:

  • Check that algos.yaml contains the parameter settings that you want to test
  • To run experiments on SIFT, invoke python run.py --dataset glove-100-angular. See python run.py --help for more information on possible settings. Note that experiments can take a long time.
  • To process the results, either use python plot.py --dataset glove-100-angular or python create_website.py. An example call: python create_website.py --plottype recall/time --latex --scatter --outputdir website/.

Including your algorithm

  1. Add your algorithm into ann_benchmarks/algorithms by providing a small Python wrapper.
  2. Add a Dockerfile in install/ for it
  3. Add it to algos.yaml
  4. Add it to .github/workflows/benchmarks.yml

Principles

  • Everyone is welcome to submit pull requests with tweaks and changes to how each library is being used.
  • In particular: if you are the author of any of these libraries, and you think the benchmark can be improved, consider making the improvement and submitting a pull request.
  • This is meant to be an ongoing project and represent the current state.
  • Make everything easy to replicate, including installing and preparing the datasets.
  • Try many different values of parameters for each library and ignore the points that are not on the precision-performance frontier.
  • High-dimensional datasets with approximately 100-1000 dimensions. This is challenging but also realistic. Not more than 1000 dimensions because those problems should probably be solved by doing dimensionality reduction separately.
  • Single queries are used by default. ANN-Benchmarks enforces that only one CPU is saturated during experimentation, i.e., no multi-threading. A batch mode is available that provides all queries to the implementations at once. Add the flag --batch to run.py and plot.py to enable batch mode.
  • Avoid extremely costly index building (more than several hours).
  • Focus on datasets that fit in RAM. For billion-scale benchmarks, see the related big-ann-benchmarks project.
  • We mainly support CPU-based ANN algorithms. GPU support exists for FAISS, but it has to be compiled with GPU support locally and experiments must be run using the flags --local --batch.
  • Do proper train/test set of index data and query points.
  • Note that we consider that set similarity datasets are sparse and thus we pass a sorted array of integers to algorithms to represent the set of each user.

Authors

Built by Erik Bernhardsson with significant contributions from Martin Aumüller and Alexander Faithfull.

Related Publication

The following publication details design principles behind the benchmarking framework:

Related Projects

Owner
Erik Bernhardsson
Working on some weird ideas for data infra. Ex-CTO at better.com, likes to open source stuff sometimes and write random blog posts.
Erik Bernhardsson
Facebook Research 605 Jan 02, 2023
SAT: 2D Semantics Assisted Training for 3D Visual Grounding, ICCV 2021 (Oral)

SAT: 2D Semantics Assisted Training for 3D Visual Grounding SAT: 2D Semantics Assisted Training for 3D Visual Grounding by Zhengyuan Yang, Songyang Zh

Zhengyuan Yang 22 Nov 30, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Used to record WKU's utility bills on a regular basis.

WKU水电费小助手 一个用于定期记录WKU水电费的脚本 Looking for English Readme? 背景 由于WKU校园内的水电账单系统时常存在扣费延迟的现象,而补扣的费用缺乏令人信服的证明。不少学生为费用摸不着头脑,但也没有申诉的依据。为了更好地掌握水电费使用情况,留下一手证据,我开源

2 Jul 21, 2022
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
An AI made using artificial intelligence (AI) and machine learning algorithms (ML) .

DTech.AIML An AI made using artificial intelligence (AI) and machine learning algorithms (ML) . This is created by help of some members in my team and

1 Jan 06, 2022
NeuroGen: activation optimized image synthesis for discovery neuroscience

NeuroGen: activation optimized image synthesis for discovery neuroscience NeuroGen is a framework for synthesizing images that control brain activatio

3 Aug 17, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation (CoRL 2021)

Distilling Motion Planner Augmented Policies into Visual Control Policies for Robot Manipulation [Project website] [Paper] This project is a PyTorch i

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 6 Feb 28, 2022