PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

Related tags

Deep Learningloop
Overview

VoiceLoop

PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop is a neural text-to-speech (TTS) that is able to transform text to speech in voices that are sampled in the wild. Some demo samples can be found here.

Quick Links

Quick Start

Follow the instructions in Setup and then simply execute:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 13 --checkpoint models/vctk/bestmodel.pth

Results will be placed in models/vctk/results. It will generate 2 samples:

You can also generate the same text but with a different speaker, specifically:

python generate.py  --npz data/vctk/numpy_features_valid/p318_212.npz --spkr 18 --checkpoint models/vctk/bestmodel.pth

Which will generate the following sample.

Here is the corresponding attention plot:

Legend: X-axis is output time (acoustic samples) Y-axis is input (text/phonemes). Left figure is speaker 10, right is speaker 14.

Finally, free text is also supported:

python generate.py  --text "hello world" --spkr 1 --checkpoint models/vctk/bestmodel.pth

Setup

Requirements: Linux/OSX, Python2.7 and PyTorch 0.1.12. Generation requires installing phonemizer, follow the setup instructions there. The current version of the code requires CUDA support for training. Generation can be done on the CPU.

git clone https://github.com/facebookresearch/loop.git
cd loop
pip install -r scripts/requirements.txt

Data

The data used to train the models in the paper can be downloaded via:

bash scripts/download_data.sh

The script downloads and preprocesses a subset of VCTK. This subset contains speakers with american accent.

The dataset was preprocessed using Merlin - from each audio clip we extracted vocoder features using the WORLD vocoder. After downloading, the dataset will be located under subfolder data as follows:

loop
├── data
    └── vctk
        ├── norm_info
        │   ├── norm.dat
        ├── numpy_feautres
        │   ├── p294_001.npz
        │   ├── p294_002.npz
        │   └── ...
        └── numpy_features_valid

The preprocess pipeline can be executed using the following script by Kyle Kastner: https://gist.github.com/kastnerkyle/cc0ac48d34860c5bb3f9112f4d9a0300.

Pretrained Models

Pretrainde models can be downloaded via:

bash scripts/download_models.sh

After downloading, the models will be located under subfolder models as follows:

loop
├── data
├── models
    ├── blizzard
    ├── vctk
    │   ├── args.pth
    │   └── bestmodel.pth
    └── vctk_alt

Update 10/25/2017: Single speaker model available in models/blizzard/

SPTK and WORLD

Finally, speech generation requires SPTK3.9 and WORLD vocoder as done in Merlin. To download the executables:

bash scripts/download_tools.sh

Which results the following sub directories:

loop
├── data
├── models
├── tools
    ├── SPTK-3.9
    └── WORLD

Training

Single-Speaker

Single speaker model is trained on blizzard 2011. Data should be downloaded and prepared as described above. Once the data is ready, run:

python train.py --noise 1 --expName blizzard_init --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-5 --epochs 10

Then, continue training the model with :

python train.py --noise 1 --expName blizzard --seq-len 1600 --max-seq-len 1600 --data data/blizzard --nspk 1 --lr 1e-4 --checkpoint checkpoints/blizzard_init/bestmodel.pth --epochs 90

Multi-Speaker

Training a new model on vctk, first train the model using noise level of 4 and input sequence length of 100:

python train.py --expName vctk --data data/vctk --noise 4 --seq-len 100 --epochs 90

Then, continue training the model using noise level of 2, on full sequences:

python train.py --expName vctk_noise_2 --data data/vctk --checkpoint checkpoints/vctk/bestmodel.pth --noise 2 --seq-len 1000 --epochs 90

Citation

If you find this code useful in your research then please cite:

@article{taigman2017voice,
  title           = {VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop},
  author          = {Taigman, Yaniv and Wolf, Lior and Polyak, Adam and Nachmani, Eliya},
  journal         = {ArXiv e-prints},
  archivePrefix   = "arXiv",
  eprinttype      = {arxiv},
  eprint          = {1705.03122},
  primaryClass    = "cs.CL",
  year            = {2017}
  month           = October,
}

License

Loop has a CC-BY-NC license.

Owner
Meta Archive
These projects have been archived and are generally unsupported, but are still available to view and use
Meta Archive
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Implementation for the "Surface Reconstruction from 3D Line Segments" paper.

Surface Reconstruction from 3D Line Segments Surface reconstruction from 3d line segments. Langlois, P. A., Boulch, A., & Marlet, R. In 2019 Internati

85 Jan 04, 2023
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
CVPR '21: In the light of feature distributions: Moment matching for Neural Style Transfer

In the light of feature distributions: Moment matching for Neural Style Transfer (CVPR 2021) This repository provides code to recreate results present

Nikolai Kalischek 49 Oct 13, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

[Open Source]. The improved version of AnimeGAN. Landscape photos/videos to anime

CC 4.4k Dec 27, 2022