FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Related tags

Deep LearningFLSim
Overview

Federated Learning Simulator (FLSim)

Federated Learning Simulator (FLSim) is a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such as computer vision and natural text. Currently FLSim supports cross-device FL, where millions of clients' devices (e.g. phones) traing a model collaboratively together.

FLSim is scalable and fast. It supports differential privacy (DP), secure aggregation (secAgg), and variety of compression techniques.

In FL, a model is trained collaboratively by multiple clients that each have their own local data, and a central server moderates training, e.g. by aggregating model updates from multiple clients.

In FLSim, developers only need to define a dataset, model, and metrics reporter. All other aspects of FL training are handled internally by the FLSim core library.

FLSim

Library Structure

FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

Installation

The latest release of FLSim can be installed via pip:

pip install flsim

You can also install directly from the source for the latest features (along with its quirks and potentially ocassional bugs):

git clone https://github.com/facebookresearch/FLSim.git
cd FLSim
pip install -e .

Getting started

To implement a central training loop in the FL setting using FLSim, a developer simply performs the following steps:

  1. Build their own data pipeline to assign individual rows of training data to client devices (to simulate data is distributed across client devices)
  2. Create a corresponding nn/Module model and wrap it in an FL model.
  3. Define a custom metrics reporter that computes and collects metrics of interest (e.g., accuracy) throughout training.
  4. Set the desired hyperparameters in a config.

Usage Example

Tutorials

To see the details, please refer to the tutorials that we have prepared.

Examples

We have prepared the runnable exampels for 2 of the tutorials above:

Contributing

See the CONTRIBUTING for how to contribute to this library.

License

This code is released under Apache 2.0, as found in the LICENSE file.

Comments
  • Bug Fix#36: fix imports in tests.

    Bug Fix#36: fix imports in tests.

    Types of changes

    • [x ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    Bug Fix#36: fix imports in tests.

    How Has This Been Tested (if it applies)

    pytest -ra is able to discover all tests now.

    Checklist

    • [x] The documentation is up-to-date with the changes I made.
    • [x] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [x ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by ghaccount 8
  • Vr

    Vr

    Types of changes

    • [ ] Bug fix (non-breaking change which fixes an issue)
    • [ ] New feature (non-breaking change which adds functionality)
    • [ ] Breaking change (fix or feature that would cause existing functionality to change)
    • [ ] Docs change / refactoring / dependency upgrade

    Motivation and Context / Related issue

    How Has This Been Tested (if it applies)

    Checklist

    • [ ] The documentation is up-to-date with the changes I made.
    • [ ] I have read the CONTRIBUTING document and completed the CLA (see CONTRIBUTING).
    • [ ] All tests passed, and additional code has been covered with new tests.
    CLA Signed 
    opened by JohnlNguyen 6
  • Move optimizer_test_utils to optimizers directory

    Move optimizer_test_utils to optimizers directory

    Summary: it is currently located at the top-level tests directory. However the top-level tests directory does not really make sense as each component is organized into its dedicated directory. optimizer_test_utils.py belongs to the optimizer directory in that sense. In this diff, we move the file to the optimizer directory and fixes the reference.

    Differential Revision: D32241821

    CLA Signed fb-exported Merged 
    opened by jessemin 3
  • Does the backend handle Federated learning asynchronously?

    Does the backend handle Federated learning asynchronously?

    I found this repo from this blog: - https://ai.facebook.com/blog/asynchronous-federated-learning/ However I do not find any mentioning on this repo and also I cannot decipher from the code examples whether this is synchronous version or asynchronous version of Federated learning? Can you please clarify this for me? And also if this is the asynchronous version how can I dive deeper in to the libraries and look at the code of implementation for the asynch handling mechanism?

    Thank you

    opened by 111Kaushal 2
  • Remove test_pytorch_local_dataset_factory

    Remove test_pytorch_local_dataset_factory

    Summary: This test had been very flaky about 1+ year ago an d never been revived since then. Deleting it from the codebase.

    Differential Revision: D32415979

    CLA Signed fb-exported Merged 
    opened by jessemin 2
  • FedSGD with virtual batching

    FedSGD with virtual batching

    🚀 Feature

    Motivation

    Create a memory efficient client to run FedSGD. If a client has many examples, running FedSGD (taking the gradient of the model based on all of the client's data) can lead to OOM. In this PR, we fix this problem by still calling optimizer.step once at the end of local training to simulate the effect of FedSGD.>

    opened by JohnlNguyen 0
  • Add Fednova as a benchmark

    Add Fednova as a benchmark

    Summary:

    What?

    Adding FedNova as a benchmark

    Why?

    FedNova is a well known paper that fixes the objective inconsistency problem

    Differential Revision: D34668291

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • Having to `import flsim.configs`  before creating config from json is unintuitive

    Having to `import flsim.configs` before creating config from json is unintuitive

    🚀 Feature

    This code works

    import flsim.configs <-- 
    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    This code doesn't work

    from flsim.utils.config_utils import fl_config_from_json
    
    json_config = {
        "trainer": {
        }
    }
    cfg = fl_config_from_json(json_config)
    

    Motivation

    Having to import flsim.configs is unintuitive and not clear from the user perspective

    Pitch

    Alternatives

    Additional context

    opened by JohnlNguyen 0
  • Fix sent140 example

    Fix sent140 example

    Summary:

    What?

    Fix tutorial to word embedding to resolve the poor accuracy problem

    Why?

    https://github.com/facebookresearch/FLSim/issues/34

    Differential Revision: D34149392

    CLA Signed fb-exported 
    opened by JohnlNguyen 1
  • low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    low test accuracy in Sentiment classification with LEAF's Sent140 tutorial?

    ❓ Questions and Help

    Until we move the questions to another medium, feel free to use this as your question:

    Question

    I tried this tutorial https://github.com/facebookresearch/FLSim/blob/main/tutorials/sent140_tutorial.ipynb And accuracy is less that random guess (50%)!

    Any suggestions or approaches to improve accuracy for this tutorial?

    from tutorial: Running (epoch = 1, round = 1, global round = 1) for Test (epoch = 1, round = 1, global round = 1), Loss/Test: 0.8683878255035598 (epoch = 1, round = 1, global round = 1), Accuracy/Test: 49.61439588688946 {'Accuracy': 49.61439588688946}

    opened by ghaccount 0
Releases(v0.1.0)
  • v0.0.1(Dec 9, 2021)

    We are excited to announce the release of FLSim 0.0.1.

    Introduction

    How does one train a machine learning model without access to user data? Federated Learning (FL) is the technology that answers this question. In a nutshell, FL is a way for many users to learn a machine learning model without sharing data collaboratively. The two scenarios for FL, cross-silo and cross-device. Cross-silo provides technologies for collaborative learning between a few large organizations with massive silo datasets. Cross-device provides collaborative learning between many small user devices with small local datasets. Cross-device FL, where millions or even billions of users cooperate on learning a model, is a much more complex problem and attracted less attention from the research community. We designed FLSim to address the cross-device FL use case.

    Federated Learning at Scale

    Large-scale cross-device Federated Learning (FL) is a federated learning paradigm with several challenges that differentiate it from cross-silo FL: millions of clients coordinating with a central server and training instability due to the significant cohort problem. With these challenges in mind, we built FLSim to be scalable while easy to use, and FLSim can scale to thousands of clients per round using only 1 GPU. We hope FLSim will equip researchers to tackle problems with federated learning at scale.

    FLSim

    Library Structure

    FLSim core components follow the same semantic as FedAvg. The server comprises three main features: selector, aggregator, and optimizer at a high level. The selector selects clients for training, and the aggregate aggregates client updates until a round is complete. Then, the optimizer optimizes the server model based on the aggregated gradients. The server communicates with the clients via the channel. The channel then compresses the message between the server and the clients. Locally, the client composes of a dataset and a local optimizer. This local optimizer can be SGD, FedProx, or a custom Pytorch optimizer.

    Included Datasets

    Currently, FLSim supports all datasets from LEAF including FEMNIST, Shakespeare, Sent140, CelebA, Synthetic and Reddit. Additionally, we support MNIST and CIFAR-10.

    Included Algorithms

    FLSim supports standard FedAvg, and other federated learning methods such as FedAdam, FedProx, FedAvgM, FedBuff, FedLARS, and FedLAMB.

    What’s next?

    We hope FLSim will foster large-scale cross-device FL research. Soon, we plan to add support for personalization in early 2022. Throughout 2022, we plan to gather feedback and improve usability. We plan to continue to grow our collection of algorithms, datasets, and models.

    Source code(tar.gz)
    Source code(zip)
Owner
Meta Research
Meta Research
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

Tengfei Wang 371 Dec 30, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Steven G. Johnson 1.4k Dec 25, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
pq is a jq-like Pickle file viewer

pq PQ is a jq-like viewer/processing tool for pickle files. howto # pq '' file.pkl {'other': 456, 'test': 123} # pq 'table' file.pkl |other|test| | 45

3 Mar 15, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022