Fader Networks: Manipulating Images by Sliding Attributes - NIPS 2017

Overview

FaderNetworks

PyTorch implementation of Fader Networks (NIPS 2017).

Fader Networks can generate different realistic versions of images by modifying attributes such as gender or age group. They can swap multiple attributes at a time, and continuously interpolate between each attribute value. In this repository we provide the code to reproduce the results presented in the paper, as well as trained models.

Single-attribute swap

Below are some examples of different attribute swaps:

Multi-attributes swap

The Fader Networks are also designed to disentangle multiple attributes at a time:

Model

The main branch of the model (Inference Model), is an autoencoder of images. Given an image x and an attribute y (e.g. male/female), the decoder is trained to reconstruct the image from the latent state E(x) and y. The other branch (Adversarial Component), is composed of a discriminator trained to predict the attribute from the latent state. The encoder of the Inference Model is trained not only to reconstruct the image, but also to fool the discriminator, by removing from E(x) the information related to the attribute. As a result, the decoder needs to consider y to properly reconstruct the image. During training, the model is trained using real attribute values, but at test time, y can be manipulated to generate variations of the original image.

Dependencies

Installation

Simply clone the repository:

git clone https://github.com/facebookresearch/FaderNetworks.git
cd FaderNetworks

Dataset

Download the aligned and cropped CelebA dataset from http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. Extract all images and move them to the data/img_align_celeba/ folder. There should be 202599 images. The dataset also provides a file list_attr_celeba.txt containing the list of the 40 attributes associated with each image. Move it to data/. Then simply run:

cd data
./preprocess.py

It will resize images, and create 2 files: images_256_256.pth and attributes.pth. The first one contains a tensor of size (202599, 3, 256, 256) containing the concatenation of all resized images. Note that you can update the image size in preprocess.py to work with different resolutions. The second file is a pre-processed version of the attributes.

Pretrained models

You can download pretrained classifiers and Fader Networks by running:

cd models
./download.sh

Train your own models

Train a classifier

To train your own model you first need to train a classifier to let the model evaluate the swap quality during the training. Training a good classifier is relatively simple for most attributes, and a good model can be trained in a few minutes. We provide a trained classifier for all attributes in models/classifier256.pth. Note that the classifier does not need to be state-of-the-art, it is not used during the training process, but is just here to monitor the swap quality. If you want to train your own classifier, you can run classifier.py, using the following parameters:

python classifier.py

# Main parameters
--img_sz 256                  # image size
--img_fm 3                    # number of feature maps
--attr "*"                    # attributes list. "*" for all attributes

# Network architecture
--init_fm 32                  # number of feature maps in the first layer
--max_fm 512                  # maximum number of feature maps
--hid_dim 512                 # hidden layer size

# Training parameters
--v_flip False                # randomly flip images vertically (data augmentation)
--h_flip True                 # randomly flip images horizontally (data augmentation)
--batch_size 32               # batch size
--optimizer "adam,lr=0.0002"  # optimizer
--clip_grad_norm 5            # clip gradient L2 norm
--n_epochs 1000               # number of epochs
--epoch_size 50000            # number of images per epoch

# Reload
--reload ""                   # reload a trained classifier
--debug False                 # debug mode (if True, load a small subset of the dataset)

Train a Fader Network

You can train a Fader Network with train.py. The autoencoder can receive feedback from:

  • The image reconstruction loss
  • The latent discriminator loss
  • The PatchGAN discriminator loss
  • The classifier loss

In the paper, only the first two losses are used, but the two others could improve the results further. You can tune the impact of each of these losses with the lambda_ae, lambda_lat_dis, lambda_ptc_dis, and lambda_clf_dis coefficients. Below is a complete list of all parameters:

# Main parameters
--img_sz 256                      # image size
--img_fm 3                        # number of feature maps
--attr "Male"                     # attributes list. "*" for all attributes

# Networks architecture
--instance_norm False             # use instance normalization instead of batch normalization
--init_fm 32                      # number of feature maps in the first layer
--max_fm 512                      # maximum number of feature maps
--n_layers 6                      # number of layers in the encoder / decoder
--n_skip 0                        # number of skip connections
--deconv_method "convtranspose"   # deconvolution method
--hid_dim 512                     # hidden layer size
--dec_dropout 0                   # dropout in the decoder
--lat_dis_dropout 0.3             # dropout in the latent discriminator

# Training parameters
--n_lat_dis 1                     # number of latent discriminator training steps
--n_ptc_dis 0                     # number of PatchGAN discriminator training steps
--n_clf_dis 0                     # number of classifier training steps
--smooth_label 0.2                # smooth discriminator labels
--lambda_ae 1                     # autoencoder loss coefficient
--lambda_lat_dis 0.0001           # latent discriminator loss coefficient
--lambda_ptc_dis 0                # PatchGAN discriminator loss coefficient
--lambda_clf_dis 0                # classifier loss coefficient
--lambda_schedule 500000          # lambda scheduling (0 to disable)
--v_flip False                    # randomly flip images vertically (data augmentation)
--h_flip True                     # randomly flip images horizontally (data augmentation)
--batch_size 32                   # batch size
--ae_optimizer "adam,lr=0.0002"   # autoencoder optimizer
--dis_optimizer "adam,lr=0.0002"  # discriminator optimizer
--clip_grad_norm 5                # clip gradient L2 norm
--n_epochs 1000                   # number of epochs
--epoch_size 50000                # number of images per epoch

# Reload
--ae_reload ""                    # reload pretrained autoencoder
--lat_dis_reload ""               # reload pretrained latent discriminator
--ptc_dis_reload ""               # reload pretrained PatchGAN discriminator
--clf_dis_reload ""               # reload pretrained classifier
--eval_clf ""                     # evaluation classifier (trained with classifier.py)
--debug False                     # debug mode (if True, load a small subset of the dataset)

Generate interpolations

Given a trained model, you can use it to swap attributes of images in the dataset. Below are examples using the pretrained models:

# Narrow Eyes
python interpolate.py --model_path models/narrow_eyes.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path narrow_eyes.png

# Eyeglasses
python interpolate.py --model_path models/eyeglasses.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path eyeglasses.png

# Age
python interpolate.py --model_path models/young.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path young.png

# Gender
python interpolate.py --model_path models/male.pth --n_images 10 --n_interpolations 10 --alpha_min 2.0 --alpha_max 2.0 --output_path male.png

# Pointy nose
python interpolate.py --model_path models/pointy_nose.pth --n_images 10 --n_interpolations 10 --alpha_min 10.0 --alpha_max 10.0 --output_path pointy_nose.png

These commands will generate images with 10 rows of 12 columns with the interpolated images. The first column corresponds to the original image, the second is the reconstructed image (without alteration of the attribute), and the remaining ones correspond to the interpolated images. alpha_min and alpha_max represent the range of the interpolation. Values superior to 1 represent generations over the True / False range of the boolean attribute in the model. Note that the variations of some attributes may only be noticeable for high values of alphas. For instance, for the "eyeglasses" or "gender" attributes, alpha_max=2 is usually enough, while for the "age" or "narrow eyes" attributes, it is better to go up to alpha_max=10.

References

If you find this code useful, please consider citing:

Fader Networks: Manipulating Images by Sliding Attributes - G. Lample, N. Zeghidour, N. Usunier, A. Bordes, L. Denoyer, M'A. Ranzato

@inproceedings{lample2017fader,
  title={Fader Networks: Manipulating Images by Sliding Attributes},
  author={Lample, Guillaume and Zeghidour, Neil and Usunier, Nicolas and Bordes, Antoine and DENOYER, Ludovic and others},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5963--5972},
  year={2017}
}

Contact: [email protected], [email protected]

Owner
Facebook Research
Facebook Research
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

Zixuan Ke 176 Jan 05, 2023
Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition"

Tensorflow Implementation for "Pre-trained Deep Convolution Neural Network Model With Attention for Speech Emotion Recognition" Pre-trained Deep Convo

Ankush Malaker 5 Nov 11, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Drone Task1 - Drone Task1 With Python

Drone_Task1 Matching Results 3.mp4 1.mp4

MLV Lab (Machine Learning and Vision Lab at Korea University) 11 Nov 14, 2022
Face recognition project by matching the features extracted using SIFT.

MV_FaceDetectionWithSIFT Face recognition project by matching the features extracted using SIFT. By : Aria Radmehr Professor : Ali Amiri Dependencies

Aria Radmehr 4 May 31, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Learning to Identify Top Elo Ratings with A Dueling Bandits Approach

Learning to Identify Top Elo Ratings We propose two algorithms MaxIn-Elo and MaxIn-mElo to solve the top players identification on the transitive and

2 Jan 14, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Pytorch implementation of Supporting Clustering with Contrastive Learning, NAACL 2021

Supporting Clustering with Contrastive Learning SCCL (NAACL 2021) Dejiao Zhang, Feng Nan, Xiaokai Wei, Shangwen Li, Henghui Zhu, Kathleen McKeown, Ram

231 Jan 05, 2023