MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Related tags

Deep LearningOctConv
Overview

Octave Convolution

MXNet implementation for:

Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

ImageNet

Ablation

  • Loss: Softmax
  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Symbol API

example

Model baseline alpha = 0.125 alpha = 0.25 alpha = 0.5 alpha = 0.75
DenseNet-121 75.4 / 92.7 76.1 / 93.0 75.9 / 93.1 -- --
ResNet-26 73.2 / 91.3 75.8 / 92.6 76.1 / 92.6 75.5 / 92.5 74.6 / 92.1
ResNet-50 77.0 / 93.4 78.2 / 93.9 78.0 / 93.8 77.4 / 93.6 76.7 / 93.0
SE-ResNet-50 77.6 / 93.6 78.7 / 94.1 78.4 / 94.0 77.9 / 93.8 77.4 / 93.5
ResNeXt-50 78.4 / 94.0 -- 78.8 / 94.2 78.4 / 94.0 77.5 / 93.6
ResNet-101 78.5 / 94.1 79.2 / 94.4 79.2 / 94.4 78.7 / 94.1 --
ResNeXt-101 79.4 / 94.6 -- 79.6 / 94.5 78.9 / 94.4 --
ResNet-200 79.6 / 94.7 80.0 / 94.9 79.8 / 94.8 79.5 / 94.7 --

Note:

  • Top-1 / Top-5, single center crop accuracy is shown in the table. (testing script)
  • All residual networks in ablation study adopt pre-actice version[1] for convenience.

Others

  • Learning rate: Cosine (warm-up: 5 epochs, lr: 0.4)
  • MXNet API: Gluon API
Model alpha label smoothing[2] mixup[3] #Params #FLOPs Top1 / Top5
0.75 MobileNet (v1) .375 2.6 M 213 M 70.5 / 89.5
1.0 MobileNet (v1) .5 4.2 M 321 M 72.5 / 90.6
1.0 MobileNet (v2) .375 Yes 3.5 M 256 M 72.0 / 90.7
1.125 MobileNet (v2) .5 Yes 4.2 M 295 M 73.0 / 91.2
Oct-ResNet-152 .125 Yes Yes 60.2 M 10.9 G 81.4 / 95.4
Oct-ResNet-152 + SE .125 Yes Yes 66.8 M 10.9 G 81.6 / 95.7

Citation

@article{chen2019drop,
  title={Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution},
  author={Chen, Yunpeng and Fan, Haoqi and Xu, Bing and Yan, Zhicheng and Kalantidis, Yannis and Rohrbach, Marcus and Yan, Shuicheng and Feng, Jiashi},
  journal={Proceedings of the IEEE International Conference on Computer Vision},
  year={2019}
}

Third-party Implementations

Acknowledgement

  • Thanks MXNet, Gluon-CV and TVM!
  • Thanks @Ldpe2G for sharing the code for calculating the #FLOPs (link)
  • Thanks Min Lin (Mila), Xin Zhao (Qihoo Inc.), Tao Wang (NUS) for helpful discussions on the code development.

Reference

[1] He K, et al "Identity Mappings in Deep Residual Networks".

[2] Christian S, et al "Rethinking the Inception Architecture for Computer Vision"

[3] Zhang H, et al. "mixup: Beyond empirical risk minimization.".

License

The code and the models are MIT licensed, as found in the LICENSE file.

Owner
Meta Research
Meta Research
CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing

CapsuleVOS This is the code for the ICCV 2019 paper CapsuleVOS: Semi-Supervised Video Object Segmentation Using Capsule Routing. Arxiv Link: https://a

53 Oct 27, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
A Light in the Dark: Deep Learning Practices for Industrial Computer Vision

A Light in the Dark: Deep Learning Practices for Industrial Computer Vision This is the repository for our Paper/Contribution to the WI2022 in Nürnber

Maximilian Harl 6 Jan 17, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021.

Open Rule Induction This repository is the official implementation of Open Rule Induction. This paper has been accepted to NeurIPS 2021. Abstract Rule

Xingran Chen 16 Nov 14, 2022
Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data - Official PyTorch Implementation (CVPR 2022)

Commonality in Natural Images Rescues GANs: Pretraining GANs with Generic and Privacy-free Synthetic Data (CVPR 2022) Potentials of primitive shapes f

31 Sep 27, 2022
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
2D Time independent Schrodinger equation solver for arbitrary shape of well

Schrodinger Well Python Python solver for timeless Schrodinger equation for well with arbitrary shape https://imgur.com/a/jlhK7OZ Pictures of circular

WeightAn 24 Nov 18, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
一套完整的微博舆情分析流程代码,包括微博爬虫、LDA主题分析和情感分析。

已经将项目的关键文件上传,包含微博爬虫、LDA主题分析和情感分析三个部分。 1.微博爬虫 实现微博评论爬取和微博用户信息爬取,一天大概十万条。 2.LDA主题分析 实现文档主题抽取,包括数据清洗及分词、主题数的确定(主题一致性和困惑度)和最优主题模型的选择(暴力搜索)。 3.情感分析 实现评论文本的

182 Jan 02, 2023
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023
A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron.

The GatedTabTransformer. A deep learning tabular classification architecture inspired by TabTransformer with integrated gated multilayer perceptron. C

Radi Cho 60 Dec 15, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022