RRL: Resnet as representation for Reinforcement Learning

Related tags

Deep LearningRRL
Overview

Quick Links

Wesbite | Paper | Video

RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image classification models are general towards different task, robust to visual distractors, and when used in conjunction with standard Imitation Learning or Reinforcement Learning pipelines can efficiently acquire behaviors directly from proprioceptive inputs.

Final Behaviors acquired using RRL on ADROIT benchmark tasks (left to right) (a) Opening a door (b) Hammering a nail (c) Pen-twirling (d)) Object relocation All Tasks

Setup

RRL codebase can be installed by cloning this repository. Note that it uses git submodules to resolve dependencies. Please follow the steps as below to install correctly.

  1. Clone this repository along with the submodules

    git clone --recursive https://github.com/facebookresearch/RRL.git
    
  2. Install the package using conda. The dependencies (apart from mujoco_py) are listed in env.yml

    conda env create -f env.yml
    
    conda activate rrl
    
  3. The environment require MuJoCo as a dependency. You may need to obtain a license and follow the setup instructions for mujoco_py. Setting up mujoco_py with GPU support is highly recommended.

  4. Install mj_envs and mjrl repositories.

    cd RRL
    pip install -e mjrl/.
    pip install -e mj_envs/.
    pip install -e .
    
  5. Additionally, it requires the demonstrations published by hand_dapg

Running Instructions

  1. First step is to convert the observations of demonstrations provided by hand_dapg to the encoder feature space. An example script is provided here. Note the script saves the demonstrations in a .pickle format inside the rrl/demonstrations directory.

    For the mj_envs tasks :

    python convertDemos.py --env_name hammer-v0 --encoder_type resnet34 -c top -d 
         
    
         
    python convertDemos.py --env_name door-v0 --encoder_type resnet34 -c top -d 
         
    
         
    python convertDemos.py --env_name pen-v0 --encoder_type resnet34 -c vil_camera -d 
         
    
         
    python convertDemos.py --env_name relocate-v0 --encoder_type resnet34 -c cam1 -c cam2 -c cam3 -d 
         
    
         
  2. Launching RRL experiments using DAPG.

    An example launching script is provided job_script.py in the examples/ directory and the configs used are stored in the examples/config/ directory. Note : Hydra configs are used.

    python job_script.py  demo_file=
         
           --config-name hammer_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name door_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name pen_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name relocate_dapg
    
         
Owner
Meta Research
Meta Research
codes for Image Inpainting with External-internal Learning and Monochromic Bottleneck

Image Inpainting with External-internal Learning and Monochromic Bottleneck This repository is for the CVPR 2021 paper: 'Image Inpainting with Externa

97 Nov 29, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023
STEAL - Learning Semantic Boundaries from Noisy Annotations (CVPR 2019)

STEAL This is the official inference code for: Devil Is in the Edges: Learning Semantic Boundaries from Noisy Annotations David Acuna, Amlan Kar, Sanj

469 Dec 26, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
DeepRec is a recommendation engine based on TensorFlow.

DeepRec Introduction DeepRec is a recommendation engine based on TensorFlow 1.15, Intel-TensorFlow and NVIDIA-TensorFlow. Background Sparse model is a

Alibaba 676 Jan 03, 2023
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
A parametric soroban written with CADQuery.

A parametric soroban written in CADQuery The purpose of this project is to demonstrate how "code CAD" can be intuitive to learn. See soroban.py for a

Lee 4 Aug 13, 2022
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

Kai Zhang 1.2k Dec 29, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Source code for CVPR 2020 paper "Learning to Forget for Meta-Learning"

L2F - Learning to Forget for Meta-Learning Sungyong Baik, Seokil Hong, Kyoung Mu Lee Source code for CVPR 2020 paper "Learning to Forget for Meta-Lear

Sungyong Baik 29 May 22, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020).

NHDRRNet-PyTorch This is the PyTorch implementation of Deep HDR Imaging via A Non-Local Network (TIP 2020). 0. Differences between Original Paper and

Yutong Zhang 1 Mar 01, 2022