Modelling the 30 salamander problem from `Pure Mathematics` by Martin Liebeck

Overview

Salamanders on an island

The Problem

From A Concise Introduction to Pure Mathematics By Martin Liebeck

Critic Ivor Smallbrain is watching the horror movie Salamanders on a Desert Island. In the film, there are 30 salamanders living on a desert island: 15 are red, 7 blue and 8 green. When two of a different colour meet, horrifyingly they both change into the third colour. (For example, if a red and a green meet, they both become blue.) When two of the same colour meet, they change into both of the other colours. (For example, if two reds meet, one becomes green and one becomes blue.) It is all quite terrifying. In between being horrified and terrified, Ivor idly wonders whether it could ever happen that at some instant in the future, all of the salamanders would be red. Can you help him ? (Hint: Consider the remainders of the totals of each colour when you divide by 3.)

Simulate the problem

import numpy as np
import random

Create the starting salamander population

pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array
all_col = set(pop) # Create set of all possible colours

pop
array(['R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R', 'R',
       'R', 'R', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'G', 'G', 'G', 'G',
       'G', 'G', 'G', 'G'], dtype='
   

Define a function for a random meeting

def meeting(gd = False):
    """
    Simulate meeting of 2 salamnders.
    Each is chosen at random from the list (without replacement)
    `gd = True` applies a proxy of gradient descent optimisation, avoiding reduction in the number of red salamanders
    """

    # Pick 2 salamanders at random
    rand_ind = random.sample(range(pop.size), 2)
    rand_sam = pop[rand_ind]

    x = rand_sam[0]
    y = rand_sam[1]

    # Apply gradient descent - skip the meeting if a red is selected, to avoid reducng the Reds number
    # (Note this is a gd proxy to reduce computation - it "should" be applied on the result of calculation rather than the input)
    if gd == True:
        if (x == 'R') | (y == 'R'): return

    # Find the colour(s) not selected
    diff = list(all_col.difference(rand_sam))
    
    # The salamanders are the same colour
    if x == y: 
        x = diff[0]
        y = diff[1]
    else: # The salamanders are different colour
        x = diff[0]
        y = x

    # Change the colours of the chosen salamanders
    pop[rand_ind[0]] = x
    pop[rand_ind[1]] = y

Run 1 million simulations

# Set number of meetings to simulate
iters = 1000000

# Run simulation of meetings
from collections import Counter
from tqdm.notebook import tqdm

random.seed(2718)
tracker = dict()
for i in tqdm(range(iters), miniters=iters/100):
    # Simulate a meeting
    meeting()
    # Save resulting population state
    tracker[i] = Counter(pop)
  0%|          | 0/1000000 [00:00

Analysis

The question posed gives a (big) hint to using modular arithmetic to assess this problem. A sample of the results is therefore taken and visualised in mod 3.

Sample first 100 results in modulo 3

# Sample the first 100 meetings to visualise progress
track_vals = list(tracker.values())
track_vals = track_vals[:100]

# Create a list of each colour in mod 3
r = []
b = []
g = []
for i in range(len(track_vals)):
    r.append(list(track_vals)[i]['R'] %3)
    b.append(list(track_vals)[i]['B'] %3)
    g.append(list(track_vals)[i]['G'] %3)
# Plot graph of population change in mod 3
import pylab as plt
from matplotlib.pyplot import figure
%matplotlib inline

figure(figsize=(25, 4), dpi=100)
plt.rcParams.update({'font.size': 15})

plt.plot(range(len(b)), b, 'b')
plt.plot(range(len(r)), r, 'r')
plt.plot(range(len(g)), g, 'g')
plt.title('Total Quantity of Salamanders in mod 3')
Text(0.5, 1.0, 'Total Quantity of Salamanders in mod 3')

png

Modulus importance

# Prepare some data for explanation
import pandas as pd
meet_s = [['-2','+1','+1']]
meet_s_mod = [['+1','+1','+1']]
meet_d = [['-1','-1','+2']]
meet_d_mod = [['+2','+2','+2']]

We observe that the red, blue, and green numbers are always different, and hold either a value of 0, 1, or 2 in mod3. This is important, as for there to be 30 Red salamanders, there need to be 0 Blue and 0 Green (total population is 30). In mod3, this would be equivalent to 0R, 0B, and 0G. In other words, for there to be all Red salamanders, there needs to be a combination of meetings such that all colours reach 0 (mod3). In this small sample, we can see that the values of each are always different in mod 3. Why is this?

The starting position of the population is 15R, 7B, and 8G. In mod3, this equates to 0R, 1B and 2G. Upon two salamanders of the same colour, x, meeting, we get a drop in 2 of that colour, and an increase of 1 for the other two colours, y and z:

pd.DataFrame(meet_s, ['xx'], ['x', 'y', 'z'])
x y z
xx -2 +1 +1

In mod3, this is equivalent to:

pd.DataFrame(meet_s_mod, ['xx'], ['x', 'y', 'z'])
x y z
xx +1 +1 +1

We see that for whichever colour, if the salamanders are the same colour, the same mathematical addition applies to all colours in mod3, such that there is no convergence between colours.
Two salamanders of different colour meeting results in:

pd.DataFrame(meet_d, ['xy'], ['x', 'y', 'z'])
x y z
xy -1 -1 +2

In mod3, this is rewritten:

pd.DataFrame(meet_d_mod, ['xy'], ['x', 'y', 'z'])
x y z
xy +2 +2 +2

Again, where salamander colours are different, there is no convergence between colours in mod3.

This exhausts all meeting possibilities, and shows there is no possibility of convergence between quantities of each colour in mod3. With this being the case, it is impossible for all to reach 0 (mod3). This means that there can never be 30 Red salamanders.

However, 29R is possible, with 0B and 1G. This maintains the count structure in mod3 as this would be 2R, 0B, 1G (mod3).

Total Reds

Max Reds

# Show how the number of reds changes over trials
r_vals = []
for trial in tracker.values():
    r_vals.append(trial['R'])

graph_len = np.min([250,len(r_vals)])
mov_max = int(np.ceil(len(r_vals)/graph_len))

red_mov_max = []
for i in range(graph_len):
    red_mov_max.append(np.max(r_vals[i*mov_max:(i+1)*mov_max]))

figure(figsize=(25, 4))
plt.plot(range(graph_len), red_mov_max, 'r')
plt.title('Max Quantity of Red Salamanders every ' + str(mov_max) + ' trials')
Text(0.5, 1.0, 'Max Quantity of Red Salamanders every 4000 trials')

png

We observe that even over 1 million trials, the maximum number of Red salamanders never reaches 29. This suggests that whilst 29R is a possibility, it is highly unlikely to occur through the random sampling used.

Frequency of Red count

# Count frequency of Reds quantities over the trials
import seaborn as sns

figure(figsize=(18, 7))
sns.set_style('darkgrid')
sns.histplot(r_vals, color='r')
plt.title('Histogram of Total Quantity of Red Salamanders')
Text(0.5, 1.0, 'Histogram of Total Quantity of Red Salamanders')

png

We observe that the histogram shows a bell-like curve of distribution. As may be expected, the modal number of Reds is 10, or 1/3 of the total population. This reflects that with more Reds present in the population, there is a higher probability of a Red being selected and therefore the number of Reds being reduced. The opposite can be observed below this level, and a similar graph would be expected for Blues and Greens.
We can see that the graph tails off drastically above 20R - if we were to assume that the number of Reds is approximately normally distributed, we could estimate the probability of getting the maximum number of Reds (29).

from scipy.stats import norm
mean = np.mean(r_vals)
std = np.std(r_vals)

norm.pdf(29, loc=mean, scale=std)
4.750575739333807e-12

This result suggests that, as a rough figure, even if we simulated 210 billion meetings, there would still be about a 37% chance (1/$e$) we would not reach the maximum of 29 Reds at any point!

NB: This is only if assuming a normal distribution, which the bounded data does not strictly fit.

Optimising the algorithm

Initially, we used a random choice of 2 salamanders at each meeting. However, it may be possible to optimise this process to reach 29R far quicker. If we only allow for meetings that increase the number of Reds, i.e. apply a gradient descent optimisation, we should reach our target in far fewer iterations.

# Reset population to the original starting point
pop = ['R']*15 + ['B']*7 + ['G']*8
pop = np.array(pop) # Convert to numpy array

# Set max number of iterations to 1000
iters = 1000

r_vals = []
for i in tqdm(range(iters)):
    # Simulate a meeting
    meeting(gd = True) # Set `gd = True` for gradient descent
    # Save resulting population state
    counter = Counter(pop)
    r_vals.append(counter['R'])
    # Stop if 29R is reached
    if counter['R'] == 29: break
  0%|          | 0/1000 [00:00
# Show how the number of reds changes over trials
figure(figsize=(18, 7))
plt.plot(range(len(r_vals)), r_vals, 'r')
plt.title('Total Quantity of Red Salamanders (Optimised Algorithm)')
Text(0.5, 1.0, 'Total Quantity of Red Salamanders (Optimised Algorithm)')

png

We can see that with the optimised algorithm, the maximum number of possible Reds, 29, was reached in under 1000 iterations.

Owner
Faisal Jina
- Data Science - Healthcare - Business - https://faisaljina.github.io
Faisal Jina
Python Script to add OpenGapps, Magisk, libhoudini translation library and libndk translation library to waydroid !

Waydroid Extras Script Script to add gapps and other stuff to waydroid ! Installation/Usage "lzip" is required for this script to work, install it usi

Casu Al Snek 331 Jan 02, 2023
A Blender addon to enable reloading linked libraries from UI.

library_reload_linked_libraries A Blender addon to enable reloading linked libraries from UI.

3 Nov 27, 2022
A Lynx that manages a group that puts the federation first.

Lynx Super Federation Management Group Lynx was created to manage your groups on telegram and focuses on the Lynx Federation. I made this to root out

Unknown 2 Nov 01, 2022
Get a list of all offline/online members in a discord server

Discord server insights Get a list of all offline/online members in a discord server. Uses Selenium to crawl invite links. Config Download Chrome driv

Prakhar Gurunani 3 Oct 21, 2022
This is a Python program I wrote to simulate the solar system with 79 lines of code.

Solar System With Python This is a Python program I wrote to simulate the solar system with 79 lines of code. Required modules tkinter, math, time Why

Mehmet Aydoğmuş 1 Oct 26, 2021
Python calculator made with tkinter package

Python-Calculator Python calculator made with tkinter package. works both on Visual Studio Code Or Any Other Ide Or You Just Copy paste The Same Thing

Pro_Gamer_711 1 Nov 11, 2021
Boamp-extractor - Script d'extraction des AOs publiés au BOAMP

BOAMP Extractor BOAMP-Extractor permet d'extraire les offres de marchés publics publiées au bulletin officiel des annonces des marchés publics (BOAMP)

Julien 3 Dec 09, 2022
Toppr Os Auto Class Joiner

Toppr Os Auto Class Joiner Toppr os is a irritating platform to work with especially for students it takes a while and is problematic most of the time

1 Dec 18, 2021
An open source recipe book from the awesome staff of Clinical Genomics

meatballs An open source recipe book from the awesome staff of Clinical Genomics.

Clinical Genomics 2 Dec 07, 2021
This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

PyJava This library is an ongoing effort towards bringing the data exchanging ability between Java/Scala and Python

Byzer 6 Oct 17, 2022
This is a simple leaderboard for 30 days of Google Cloud program for students of ASIET

30daysleaderboard #Hacktoberfest - Please don't make changes in readme file. Only improvement in the project will be accepted. Update - Now if you run

5 Oct 29, 2021
One-stop-shop for docs and test coverage of dbt projects.

dbt-coverage One-stop-shop for docs and test coverage of dbt projects. Why do I need something like this? dbt-coverage is to dbt what coverage.py and

Slido 106 Dec 27, 2022
You will need to install a few python packages for this one.

Features Bait support Auto repair will repair every 10 catches Anti detection (still a work in progress) but using random times and click positions Pr

12 Sep 21, 2022
A package with multiple bias correction methods for climatic variables, including the QM, DQM, QDM, UQM, and SDM methods

A package with multiple bias correction methods for climatic variables, including the QM, DQM, QDM, UQM, and SDM methods

Sebastián A. Aedo Quililongo 9 Nov 18, 2022
🤡 Multiple Discord selfbot src deobfuscated !

Deobfuscated selfbot sources About. If you whant to add src, please make pull requests. If you whant to deobfuscate src, send mail to

Sreecharan 5 Sep 13, 2021
A python script that fetches the grades of a student from a WAEC result in pdf format.

About waec-result-analyzer A python script that fetches the grades of a student from a WAEC result in pdf format. Built for federal government college

Oshodi Kolapo 2 Dec 04, 2021
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
Python decorator for `TODO`s

Python decorator for `TODO`s. Don't let your TODOs rot in your python projects anymore !

Klemen Sever 74 Sep 13, 2022
Python with the scientific stack, compiled to WebAssembly.

Pyodide may be used in any context where you want to run Python inside a web browser.

9.5k Jan 09, 2023
Nuclei - Burp Extension allows to run nuclei scanner directly from burp and transforms json results into the issues

Nuclei - Burp Extension Simple extension that allows to run nuclei scanner directly from burp and transforms json results into the issues. Installatio

106 Dec 22, 2022