Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Overview

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021)

Paper

Introduction

The conventional detectors tend to make imbalanced classification and suffer performance drop, when the distribution of the training data is severely skewed. In this paper, we propose to use the mean classification score to indicate the classification accuracy for each category during training. Based on this indicator, we balance the classification via an Equilibrium Loss (EBL) and a Memory-augmented Feature Sampling (MFS) method. Specifically, EBL increases the intensity of the adjustment of the decision boundary for the weak classes by a designed score-guided loss margin between any two classes. On the other hand, MFS improves the frequency and accuracy of the adjustments of the decision boundary for the weak classes through over-sampling the instance features of those classes. Therefore, EBL and MFS work collaboratively for finding the classification equilibrium in long-tailed detection, and dramatically improve the performance of tail classes while maintaining or even improving the performance of head classes. We conduct experiments on LVIS using Mask R-CNN with various backbones including ResNet-50-FPN and ResNet-101-FPN to show the superiority of the proposed method. It improves the detection performance of tail classes by 15.6 AP, and outperforms the most recent long-tailed object detectors by more than 1 AP.

Method overview

method overview

Memory-augmented Feature Sampling (MFS)

method overview

Prerequisites

  • MMDetection version 2.8.0.

  • Please see get_started.md for installation and the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with LVIS v1.0 dataset in 'data/lvis_v1/'.
# use decoupled training pipeline:

# 1. train the model with Mask R-CNN
./tools/dist_train.sh configs/loce/mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

# 2. fine-tune the model with LOCE
./tools/dist_train.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py 8

Inference

./tools/dist_test.sh configs/loce/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1.py work_dirs/loce_mask_rcnn_r50_fpn_normed_mask_mstrain_2x_lvis_v1/epoch_6.pth 8 --eval bbox segm

Models

For your convenience, we provide the following trained models (LOCE). All models are trained with 16 images in a mini-batch.

Model Dataset MS train box AP mask AP Pretrained Model LOCE
LOCE_R_50_FPN_2x LVIS v0.5 Yes 28.2 28.4 config / model config / model
LOCE_R_50_FPN_2x LVIS v1.0 Yes 27.4 26.6 config / model config / model
LOCE_R_101_FPN_2x LVIS v1.0 Yes 29.0 28.0 config / model config / model

[0] All results are obtained with a single model and without any test time data augmentation such as multi-scale, flipping and etc..
[1] Refer to more details in config files in config/loce/.

Acknowledgement

Thanks MMDetection team for the wonderful open source project!

Citation

If you find LOCE useful in your research, please consider citing:

@inproceedings{feng2021exploring,
    title={Exploring Classification Equilibrium in Long-Tailed Object Detection},
    author={Feng, Chengjian and Zhong, Yujie and Huang, Weilin},
    booktitle={ICCV},
    year={2021}
}
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Discerning Decision-Making Process of Deep Neural Networks with Hierarchical Voting Transformation

Configurations Change HOME_PATH in CONFIG.py as the current path Data Prepare CENSINCOME Download data Put census-income.data and census-income.test i

2 Aug 14, 2022
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022