Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

Overview

Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence (CVPR'2020)

Wenhan Yang, Robby T. Tan, Shiqi Wang, and Jiaying Liu

[Paper Link] [Project Page] [Slides](TBA)[Video](TBA) (CVPR'2020 Poster)

Abstract

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process. The method is inspired by fact that the adjacent frames are highly correlated and can be regarded as different versions of identical scene, and rain streaks are randomly distributed along the temporal dimension. With this in mind, we construct a two-stage Self-Learned Deraining Network (SLDNet) to remove rain streaks based on both temporal correlation and consistency. In the first stage, SLDNet utilizes the temporal correlations and learns to predict the clean version of the current frame based on its adjacent rain video frames. In the second stage, SLDNet enforces the temporal consistency among different frames. It takes both the current rain frame and adjacent rain video frames to recover the structural details. The first stage is responsible for reconstructing main structures, and the second stage is responsible for extracting structural details. We build our network architecture with two sub-tasks, i.e. motion estimation and rain region detection, and optimize them jointly. Our extensive experiments demonstrate the effectiveness of our method, offering better results both quantitatively and qualitatively.

If you find the resource useful, please cite the following :- )

@InProceedings{Yang_2020_CVPR,
author = {Yang, Wenhan and Tan, Robby T. and Wang, Shiqi and Liu, Jiaying},
title = {Self-Learning Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

## Prerequisites - Linux or macOS - Python 3 - NVIDIA GPU + CUDA cuDNN - PyTorch 0.4

Installation

  1. Clone this repo;
  2. Install PyTorch and dependencies from http://pytorch.org;
  3. Download FLowNet V2.0 from https://pan.baidu.com/s/14xPBvYcnGjAJ2adsQOVKhA (extracted code: 3is9). Put the file FlowNet2_checkpoint.pth.tar into SLDNet_code/pretrained_models/FlowNet2_checkpoint.pth.tar;
  4. Download NTURain Dataset (Only including b1_Rain) from https://pan.baidu.com/s/1nsBl6uhj-MWVgr1uBcsy1w (extraced code:rufg). For other sequences, please download them from https://github.com/hotndy/SPAC-SupplementaryMaterials. Unzip b1_Rain.zip and put the file into SLDNet_code/data_NTU/train/b1_Rain/ and SLDNet_code/data_NTU/test/b1_Rain/.

Train

cd SLDNet_code; sh train_video_rain.sh;

Test

cd SLDNet_code; sh test_video_rain.sh;

Contact

If you have questions, you can contact [email protected].

Owner
Yang Wenhan
Yang Wenhan
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
An original implementation of "Noisy Channel Language Model Prompting for Few-Shot Text Classification"

Channel LM Prompting (and beyond) This includes an original implementation of Sewon Min, Mike Lewis, Hannaneh Hajishirzi, Luke Zettlemoyer. "Noisy Cha

Sewon Min 92 Jan 07, 2023
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
This tool uses Deep Learning to help you draw and write with your hand and webcam.

This tool uses Deep Learning to help you draw and write with your hand and webcam. A Deep Learning model is used to try to predict whether you want to have 'pencil up' or 'pencil down'.

lmagne 169 Dec 10, 2022
The object detection pipeline is based on Ultralytics YOLOv5

AYOLOv2 The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptabil

153 Dec 22, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Rotation Robust Descriptors

RoRD Rotation-Robust Descriptors and Orthographic Views for Local Feature Matching Project Page | Paper link Evaluation and Datasets MMA : Training on

Udit Singh Parihar 25 Nov 15, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
Algorithm to texture 3D reconstructions from multi-view stereo images

MVS-Texturing Welcome to our project that textures 3D reconstructions from images. This project focuses on 3D reconstructions generated using structur

Nils Moehrle 766 Jan 04, 2023
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022