Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Overview

Omniverse sample scripts

ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/omniverse/ ) のスクリプトのサンプルを貯めていってます。
Omniverseは、データ構造としてUSDを使用してます。
3Dモデルやシーンのファイルへの保存、読み込みでUSDが使用されるだけでなく、
Omniverse CreateやOmniverse ViewなどのOmniverseアプリのビュー上の制御もUSDを介して行われます(形状の表示/非表示の切り替えや移動など)。

ここでは、OmniverseアプリであるOmniverse CreateのScript Editorで試せるスクリプトのサンプルを用途別に列挙します。
Omniverse Create 2021.3.8で確認しました。

開発の参考サイト

Omniverseの情報は、Omniverse Launcherがポータルになっています。
ここのLEARNにチュートリアル動画やドキュメントなどが列挙されています。

NVIDIA Omniverse Developer Resource Center

https://developer.nvidia.com/nvidia-omniverse-developer-resource-center

Omniverse開発の入口となるサイトです。
全体的に何ができて何が重要か、というのは俯瞰して見ることができます。

はじめに

Omniverse Createで、メインメニューの [Window] - [Script Editor]を選択して、Script Editorを起動します。

omniverse_script_editor_01.png

この中でPythonを使用してプログラムを書きます。
左下のRunボタンを押すか、[Ctrl] +[Enter]キーを押すことで実行します。

以下、Pythonの初歩的な説明です。

コメント

1行のコメントの場合、"#"から行の末尾までがコメントになります。

# comment.

複数行の場合は、""" から """ までがコメントになります。

"""
comment.
line2.
"""

print

デバッグ用のメッセージはprintで記載します。

print('Hello Omniverse !')

学習のための知識

機能説明用のサンプル

サンプル 説明
Camera カメラ操作
Geometry ジオメトリの作成
Material マテリアルの割り当て
Math ベクトル/行列計算関連
Operation Ominverseの操作情報を取得/イベント処理
Physics Physics(物理)処理
pip_archive Pythonのよく使われるモジュールの使用
Prim USDのPrim(ノード)の操作
Rendering レンダリング画像の取得
Scene シーン情報の取得
Settings 設定の取得
System システム関連情報の取得
UI UI操作

ツール的なサンプル

サンプル 説明
Samples サンプルスクリプト

Extension

サンプル 説明
Extensions サンプルExtension
Owner
ft-lab (Yutaka Yoshisaka)
ft-lab (Yutaka Yoshisaka)
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
MTA:SA Server Configer.

MTAConfiger MTA:SA Server Configer. Hi 👋 , I'm Alireza A Python Developer Boy 🔭 I’m currently working on my C# projects 🌱 I’m currently Learning CS

3 Jun 07, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
PyTorch implementation of the end-to-end coreference resolution model with different higher-order inference methods.

End-to-End Coreference Resolution with Different Higher-Order Inference Methods This repository contains the implementation of the paper: Revealing th

Liyan 52 Jan 04, 2023
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement This is the repository for the paper "Improving the Accuracy-Memory Trad

3 Dec 29, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Joint Learning of 3D Shape Retrieval and Deformation, CVPR 2021

Joint Learning of 3D Shape Retrieval and Deformation Joint Learning of 3D Shape Retrieval and Deformation Mikaela Angelina Uy, Vladimir G. Kim, Minhyu

Mikaela Uy 38 Oct 18, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
A Learning-based Camera Calibration Toolbox

Learning-based Camera Calibration A Learning-based Camera Calibration Toolbox Paper The pdf file can be found here. @misc{zhang2022learningbased,

Eason 14 Dec 21, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023