Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Overview

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv]

Setup

  • Python 3.8.0
  • pip install -r req.txt
  • Mujoco 200 license

Main Files

  • main.py: main run file for model training
  • models.py: neural networks for policy and critic models
  • optim.py: second-order approximations for realizing the natural gradient
  • utils.py: helper functions

Reproducing Experiments

  • scripts/: bash training scripts formatted for compute canada/SLURM jobs
  • visualize/json: training hyperparameters for each experiment
  • visualize/csv: training results in .csv format
  • visualize/performance.py: (after training) view results & create .csv results
    • best to run with VSCode ipython cells

Experiment Example

To run the baseline experiments:

  • Tune hparams: bash scripts/hparams/baseline.sh
    • runs will be saved in runs/hparams_baseline/...
  • Extract best hparams from runs: python baseline_hparams.py
    • the best hparams will be saved in visualize/json/baseline.json
  • Run training with hparams: bash scripts/baseline/diagonal.sh
    • runs will be saved in runs/5e6_baseline/...
  • Run speed tests: bash scripts/speed/baseline.sh
    • runs will be saved in runs/baseline_speed/...
  • View results: run interactive ipython in visualize/performance.py
# %%
runs_path = pathlib.Path("../runs/5e6_baseline/")
speed_runs_path = pathlib.Path("../runs/baseline_speed/")
name = "baseline"
baseline_data = analyze(runs_path, speed_runs_path)
baseline_df = mean_df(*baseline_data, name, save=True)

Second-order Approximation References

Implementations

Other

  • Code formatted with Black
  • Experiment runs format: runs/{experiment_name}/{env_name}/{approximation}_runs/{tensorboard folder}/...
Owner
Brennan Gebotys
Brennan Gebotys
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Free course that takes you from zero to Reinforcement Learning PRO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½

The Hands-on Reinforcement Learning course πŸš€ From zero to HERO πŸ¦ΈπŸ»β€πŸ¦ΈπŸ½ Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
[CVPR 2021 Oral] ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis

ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis ForgeryNet: A Versatile Benchmark for Comprehensive Forgery Analysis [arxiv|pdf|v

Yinan He 78 Dec 22, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
UMT is a unified and flexible framework which can handle different input modality combinations, and output video moment retrieval and/or highlight detection results.

Unified Multi-modal Transformers This repository maintains the official implementation of the paper UMT: Unified Multi-modal Transformers for Joint Vi

Applied Research Center (ARC), Tencent PCG 84 Jan 04, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Multitask Learning Strengthens Adversarial Robustness

Multitask Learning Strengthens Adversarial Robustness

Columbia University 15 Jun 10, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022