QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Overview

QuickAI logo

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Announcement video https://www.youtube.com/watch?v=kK46sJphjIs

Motivation

When I started to get into more advanced Machine Learning, I started to see how these famous neural network architectures(such as EfficientNet), were doing amazing things. However, when I tried to implement these architectures to problems that I wanted to solve, I realized that it was not super easy to implement and quickly experiment with these architectures. That is where QuickAI came in. It allows for easy experimentation of many model architectures quickly.

Dependencies:

Tensorflow, PyTorch, Sklearn, Matplotlib, Numpy, and Hugging Face Transformers. You should install TensorFlow and PyTorch following the instructions from their respective websites.

Why you should use QuickAI

QuickAI can reduce what would take tens of lines of code into 1-2 lines. This makes fast experimentation very easy and clean. For example, if you wanted to train EfficientNet on your own dataset, you would have to manually write the data loading, preprocessing, model definition and training code, which would be many lines of code. Whereas, with QuickAI, all of these steps happens automatically with just 1-2 lines of code.

The following models are currently supported:

  1. Image Classification

    • EfficientNet B0-B7
    • VGG16
    • VGG19
    • DenseNet121
    • DenseNet169
    • DenseNet201
    • Inception ResNet V2
    • Inception V3
    • MobileNet
    • MobileNet V2
    • MobileNet V3 Small & Large
    • ResNet 101
    • ResNet 101 V2
    • ResNet 152
    • ResNet 152 V2
    • ResNet 50
    • ResNet 50 V2
    • Xception
  2. Natural Language Processing

    • GPT-NEO 125M(Generation, Inference)
    • GPT-NEO 350M(Generation, Inference)
    • GPT-NEO 1.3B(Generation, Inference)
    • GPT-NEO 2.7B(Generation, Inference)
    • Distill BERT Cased(Q&A, Inference and Fine Tuning)
    • Distill BERT Uncased(Named Entity Recognition, Inference)
    • Distil BART (Summarization, Inference)
    • Distill BERT Uncased(Sentiment Analysis & Text/Token Classification, Inference and Fine Tuning)

Installation

pip install quickAI

How to use

Please see the examples folder for details.

Issues/Questions

If you encounter any bugs, please open a new issue so they can be corrected. If you have general questions, please use the discussion section.

Comments
  • Memory error

    Memory error

    Is it possible to host the gpt neo models on a website and make some kind of API, the models are to large to run on my computer. Also It would be nice if to have a stop function so the model knows at what token to stop and be able to add examples of the query needed.

    enhancement 
    opened by TheProtaganist 5
  • Add link to a demo

    Add link to a demo

    Hi, I tried using the notebook in the example folder but it wasn't working (I think the files were not imported into Colab), so I created a demo which should work.

    opened by equiet 1
  • Better code for image_classification.py

    Better code for image_classification.py

    Main change: Used a dict instead of excessive elifs. Other smaller changes.

    Important: I do not have the resources to test the code, but technically, it's just a rewrite of the original, so it should work.

    opened by pinjuf 1
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires numpy, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade ubuntu from 21.10 to jammy

    [Snyk] Security upgrade ubuntu from 21.10 to jammy

    This PR was automatically created by Snyk using the credentials of a real user.


    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:jammy, as this image has only 10 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 514 | Out-of-bounds Read
    SNYK-UBUNTU2110-E2FSPROGS-2770726 | No Known Exploit | | medium severity | 300 | NULL Pointer Dereference
    SNYK-UBUNTU2110-KRB5-1735754 | No Known Exploit | | medium severity | 300 | OS Command Injection
    SNYK-UBUNTU2110-OPENSSL-2933132 | No Known Exploit | | medium severity | 300 | Inadequate Encryption Strength
    SNYK-UBUNTU2110-OPENSSL-2941384 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by geekjr 0
  • [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    [Snyk] Security upgrade wheel from 0.30.0 to 0.38.0

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-WHEEL-3092128 | wheel:
    0.30.0 -> 0.38.0
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from rolling to 21.10

    [Snyk] Security upgrade ubuntu from rolling to 21.10

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:21.10, as this image has only 12 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Issue | Exploit Maturity | | :------: | :---- | :--------------- | | medium severity | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU2110-PERL-1930909 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU2110-SHADOW-1758374 | No Known Exploit | | low severity | NULL Pointer Dereference
    SNYK-UBUNTU2110-TAR-1744334 | No Known Exploit | | medium severity | CVE-2018-25032
    SNYK-UBUNTU2110-ZLIB-2433596 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade ubuntu from 18.04 to rolling

    [Snyk] Security upgrade ubuntu from 18.04 to rolling

    Keeping your Docker base image up-to-date means you’ll benefit from security fixes in the latest version of your chosen image.

    Changes included in this PR

    • Dockerfile

    We recommend upgrading to ubuntu:rolling, as this image has only 13 known vulnerabilities. To do this, merge this pull request, then verify your application still works as expected.

    Some of the most important vulnerabilities in your base image include:

    | Severity | Priority Score / 1000 | Issue | Exploit Maturity | | :------: | :-------------------- | :---- | :--------------- | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Information Exposure
    SNYK-UBUNTU1804-GCC8-572149 | No Known Exploit | | medium severity | 300 | Improper Verification of Cryptographic Signature
    SNYK-UBUNTU1804-PERL-1930908 | No Known Exploit | | low severity | 150 | Time-of-check Time-of-use (TOCTOU)
    SNYK-UBUNTU1804-SHADOW-306209 | No Known Exploit |


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 471/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321966 | numpy:
    1.19.5 -> 1.22.0
    | No | No Known Exploit low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    [Snyk] Security upgrade numpy from 1.19.5 to 1.22.0rc1

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Buffer Overflow
    SNYK-PYTHON-NUMPY-2321969 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept low severity | 578/1000
    Why? Proof of Concept exploit, Recently disclosed, Has a fix available, CVSS 3.7 | Denial of Service (DoS)
    SNYK-PYTHON-NUMPY-2321970 | numpy:
    1.19.5 -> 1.22.0rc1
    | No | Proof of Concept

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the effected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic

    opened by snyk-bot 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.1 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 551/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.3 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3180412 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    [Snyk] Security upgrade setuptools from 39.0.1 to 65.5.1

    This PR was automatically created by Snyk using the credentials of a real user.


    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires numpy, which is not installed.
    torchvision 0.5.0 requires pillow, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- low severity | 441/1000
    Why? Recently disclosed, Has a fix available, CVSS 3.1 | Regular Expression Denial of Service (ReDoS)
    SNYK-PYTHON-SETUPTOOLS-3113904 | setuptools:
    39.0.1 -> 65.5.1
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Regular Expression Denial of Service (ReDoS)

    opened by geekjr 0
  • [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    [Snyk] Security upgrade protobuf from 3.20.1 to 3.20.2

    Snyk has created this PR to fix one or more vulnerable packages in the `pip` dependencies of this project.

    Changes included in this PR

    • Changes to the following files to upgrade the vulnerable dependencies to a fixed version:
      • requirements.txt
    ⚠️ Warning
    torchvision 0.5.0 requires pillow, which is not installed.
    sympy 1.5.1 requires mpmath, which is not installed.
    coremltools 6.0 requires protobuf, which is not installed.
    
    

    Vulnerabilities that will be fixed

    By pinning:

    Severity | Priority Score (*) | Issue | Upgrade | Breaking Change | Exploit Maturity :-------------------------:|-------------------------|:-------------------------|:-------------------------|:-------------------------|:------------------------- medium severity | 571/1000
    Why? Recently disclosed, Has a fix available, CVSS 5.7 | Denial of Service (DoS)
    SNYK-PYTHON-PROTOBUF-3031740 | protobuf:
    3.20.1 -> 3.20.2
    | No | No Known Exploit

    (*) Note that the real score may have changed since the PR was raised.

    Some vulnerabilities couldn't be fully fixed and so Snyk will still find them when the project is tested again. This may be because the vulnerability existed within more than one direct dependency, but not all of the affected dependencies could be upgraded.

    Check the changes in this PR to ensure they won't cause issues with your project.


    Note: You are seeing this because you or someone else with access to this repository has authorized Snyk to open fix PRs.

    For more information: 🧐 View latest project report

    🛠 Adjust project settings

    📚 Read more about Snyk's upgrade and patch logic


    Learn how to fix vulnerabilities with free interactive lessons:

    🦉 Learn about vulnerability in an interactive lesson of Snyk Learn.

    opened by snyk-bot 0
Releases(2.0.0)
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
The original implementation of TNDM used in the NeurIPS 2021 paper (no longer being updated)

TNDM - Targeted Neural Dynamical Modeling Note: This code is no longer being updated. The official re-implementation can be found at: https://github.c

1 Jul 21, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

Libraries, tools and tasks created and used at DeepMind Robotics.

DeepMind 270 Nov 30, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022