Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

Overview

CTC Decoding Algorithms

Update 2021: installable Python package

Python implementation of some common Connectionist Temporal Classification (CTC) decoding algorithms. A minimalistic language model is provided.

Installation

  • Go to the root level of the repository
  • Execute pip install .
  • Go to tests/ and execute pytest to check if installation worked

Usage

Basic usage

Here is a minimalistic executable example:

import numpy as np
from ctc_decoder import best_path, beam_search

mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]])
chars = 'ab'

print(f'Best path: "{best_path(mat, chars)}"')
print(f'Beam search: "{beam_search(mat, chars)}"')

The output mat (numpy array, softmax already applied) of the CTC-trained neural network is expected to have shape TxC and is passed as the first argument to the decoders. T is the number of time-steps, and C the number of characters (the CTC-blank is the last element). The characters that can be predicted by the neural network are passed as the chars string to the decoder. Decoders return the decoded string.
Running the code outputs:

Best path: ""
Beam search: "a"

To see more examples on how to use the decoders, please have a look at the scripts in the tests/ folder.

Language model and BK-tree

Beam search can optionally integrate a character-level language model. Text statistics (bigrams) are used by beam search to improve reading accuracy.

from ctc_decoder import beam_search, LanguageModel

# create language model instance from a (large) text
lm = LanguageModel('this is some text', chars)

# and use it in the beam search decoder
res = beam_search(mat, chars, lm=lm)

The lexicon search decoder computes a first approximation with best path decoding. Then, it uses a BK-tree to retrieve similar words, scores them and finally returns the best scoring word. The BK-tree is created by providing a list of dictionary words. A tolerance parameter defines the maximum edit distance from the query word to the returned dictionary words.

from ctc_decoder import lexicon_search, BKTree

# create BK-tree from a list of words
bk_tree = BKTree(['words', 'from', 'a', 'dictionary'])

# and use the tree in the lexicon search
res = lexicon_search(mat, chars, bk_tree, tolerance=2)

Usage with deep learning frameworks

Some notes:

  • No adapter for TensorFlow or PyTorch is provided
  • Apply softmax already in the model
  • Convert to numpy array
  • Usually, the output of an RNN layer rnn_output has shape TxBxC, with B the batch dimension
    • Decoders work on single batch elements of shape TxC
    • Therefore, iterate over all batch elements and apply the decoder to each of them separately
    • Example: extract matrix of batch element 0 mat = rnn_output[:, 0, :]
  • The CTC-blank is expected to be the last element along the character dimension
    • TensorFlow has the CTC-blank as last element, so nothing to do here
    • PyTorch, however, has the CTC-blank as first element by default, so you have to move it to the end, or change the default setting

List of provided decoders

Recommended decoders:

  • best_path: best path (or greedy) decoder, the fastest of all algorithms, however, other decoders often perform better
  • beam_search: beam search decoder, optionally integrates a character-level language model, can be tuned via the beam width parameter
  • lexicon_search: lexicon search decoder, returns the best scoring word from a dictionary

Other decoders, from my experience not really suited for practical purposes, but might be used for experiments or research:

  • prefix_search: prefix search decoder
  • token_passing: token passing algorithm
  • Best path decoder implementation in OpenCL (see extras/ folder)

This paper gives suggestions when to use best path decoding, beam search decoding and token passing.

Documentation of test cases and data

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
KoBERT - Korean BERT pre-trained cased (KoBERT)

KoBERT KoBERT Korean BERT pre-trained cased (KoBERT) Why'?' Training Environment Requirements How to install How to use Using with PyTorch Using with

SK T-Brain 1k Jan 02, 2023
Final Project Bootcamp Zero

The Quest (Pygame) Descripción Este es el repositorio de código The-Quest para el proyecto final Bootcamp Zero de KeepCoding. El juego consiste en la

Seven-z01 1 Mar 02, 2022
DVC-NLP-Simple-usecase

dvc-NLP-simple-usecase DVC NLP project Reference repository: official reference repo DVC STUDIO MY View Bag of Words- Krish Naik TF-IDF- Krish Naik ST

SUNNY BHAVEEN CHANDRA 2 Oct 02, 2022
Dual languaged (rus+eng) tool for packing and unpacking archives of Silky Engine.

SilkyArcTool English Dual languaged (rus+eng) GUI tool for packing and unpacking archives of Silky Engine. It is not the same arc as used in Ai6WIN. I

Tester 5 Sep 15, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
Collection of useful (to me) python scripts for interacting with napari

Napari scripts A collection of napari related tools in various state of disrepair/functionality. Browse_LIF_widget.py This module can be imported, for

5 Aug 15, 2022
Search for documents in a domain through Google. The objective is to extract metadata

MetaFinder - Metadata search through Google _____ __ ___________ .__ .___ / \

Josué Encinar 85 Dec 16, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
Transformers Wav2Vec2 + Parlance's CTCDecodeTransformers Wav2Vec2 + Parlance's CTCDecode

🤗 Transformers Wav2Vec2 + Parlance's CTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with Parlance's ctcdecode

Patrick von Platen 9 Jul 21, 2022
Official code for "Parser-Free Virtual Try-on via Distilling Appearance Flows", CVPR 2021

Parser-Free Virtual Try-on via Distilling Appearance Flows, CVPR 2021 Official code for CVPR 2021 paper 'Parser-Free Virtual Try-on via Distilling App

395 Jan 03, 2023
A complete NLP guideline for enthusiasts

NLP-NINJA A complete guide for Natural Language Processing in Python Table of Contents S.No. Topic Level Meaning 1 Tokenization 🤍 Beginner 2 Stemming

MAINAK CHAUDHURI 22 Dec 27, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Simple multilingual lemmatizer for Python, especially useful for speed and efficiency

Simplemma: a simple multilingual lemmatizer for Python Purpose Lemmatization is the process of grouping together the inflected forms of a word so they

Adrien Barbaresi 70 Dec 29, 2022
Final Project for the Intel AI Readiness Boot Camp NLP (Jan)

NLP Boot Camp (Jan) Synopsis Full Name: Prameya Mohanty Name of your School: Delhi Public School, Rourkela Class: VIII Title of the Project: iTransect

TheCodingHub 1 Feb 01, 2022