AIST++ API This repo contains starter code for using the AIST++ dataset.

Overview

AIST++ API

This repo contains starter code for using the AIST++ dataset. To download the dataset or explore details of this dataset, please go to our dataset website.

Installation

The code has been tested on python>=3.7. You can install the dependencies and this repo by:

pip install -r requirements.txt
python setup.py install

You also need to make sure ffmpeg is installed on your machine, if you would like to visualize the annotations using this api.

How to use

We provide demo code for loading and visualizing AIST++ annotations. Note AIST++ annotations and videos, as well as the SMPL model (for SMPL visualization only) are required to run the demo code.

The directory structure of the data is expected to be:


├── motions/
├── keypoints2d/
├── keypoints3d/
├── splits/
├── cameras/
└── ignore_list.txt


└── *.mp4


├── SMPL_MALE.pkl
└── SMPL_FEMALE.pkl

Visualize 2D keypoints annotation

The command below will plot 2D keypoints onto the raw video and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 2D

Visualize 3D keypoints annotation

The command below will project 3D keypoints onto the raw video using camera parameters, and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 3D

Visualize the SMPL joints annotation

The command below will first calculate the SMPL joint locations from our motion annotations (joint rotations and root trajectories), then project them onto the raw video and plot. The result will be saved into the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \ 
  --smpl_dir <SMPL_DIR> \
  --save_dir ./visualization/ \ 
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \ 
  --mode SMPL

Multi-view 3D keypoints and motion reconstruction

This repo also provides code we used for constructing this dataset from the multi-view AIST Dance Video Database. The construction pipeline starts with frame-by-frame 2D keypoint detection and manual camera estimation. Then triangulation and bundle adjustment are applied to optimize the camera parameters as well as the 3D keypoints. Finally we sequentially fit the SMPL model to 3D keypoints to get a motion sequence represented using joint angles and a root trajectory. The following figure shows our pipeline overview.

AIST++ construction pipeline overview.

The annotations in AIST++ are in COCO-format for 2D & 3D keypoints, and SMPL-format for human motion annotations. It is designed to serve general research purposes. However, in some cases you might need the data in different format (e.g., Openpose / Alphapose keypoints format, or STAR human motion format). With the code we provide, it should be easy to construct your own version of AIST++, with your own keypoint detector or human model definition.

Step 1. Assume you have your own 2D keypoint detection results stored in , you can start by preprocessing the keypoints into the .pkl format that we support. The code we used at this step is as follows but you might need to modify the script run_preprocessing.py in order to be compatible with your own data.

python processing/run_preprocessing.py \
  --keypoints_dir <KEYPOINTS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints2d/

Step 2. Then you can estimate the camera parameters using your 2D keypoints. This step is optional as you can still use our camera parameter estimates which are quite accurate. At this step, you will need the /cameras/mapping.txt file which stores the mapping from videos to different environment settings.

# If you would like to estimate your own camera parameters:
python processing/run_estimate_camera.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/cameras/
# Or you can skip this step by just using our camera parameter estimates.

Step 3. Next step is to perform 3D keypoints reconstruction from multi-view 2D keypoints and camera parameters. You can just run:

python processing/run_estimate_keypoints.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints3d/

Step 4. Finally we can estimate SMPL-format human motion data by fitting the 3D keypoints to the SMPL model. If you would like to use another human model such as STAR, you will need to do some modifications in the script run_estimate_smpl.py. The following command runs SMPL fitting.

python processing/run_estimate_smpl.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --smpl_dir <SMPL_DIR> \
  --save_dir <ANNOTATIONS_DIR>/motions/

Note that this step will take several days to process the entire dataset if your machine has only one GPU. In practise, we run this step on a cluster, but are only able to provide the single-threaded version.

MISC.

  • COCO-format keypoint definition:
[
"nose", 
"left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder","right_shoulder", 
"left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", 
"left_knee", "right_knee", "left_ankle", "right_ankle"
]
  • SMPL-format body joint definition:
[
"root", 
"left_hip", "left_knee", "left_foot", "left_toe", 
"right_hip", "right_knee", "right_foot", "right_toe",
"waist", "spine", "chest", "neck", "head", 
"left_in_shoulder", "left_shoulder", "left_elbow", "left_wrist",
"right_in_shoulder", "right_shoulder", "right_elbow", "right_wrist"
]
Owner
Google
Google ❤️ Open Source
Google
Scientific Programming: A Crash Course

Scientific Programming: A Crash Course Welcome to the Scientific Programming course. My name is Jon Carr and I am a postdoc in Davide Crepaldi's lab.

Jon Carr 1 Feb 17, 2022
Python library to natively send files to Trash (or Recycle bin) on all platforms.

Send2Trash -- Send files to trash on all platforms Send2Trash is a small package that sends files to the Trash (or Recycle Bin) natively and on all pl

Andrew Senetar 224 Jan 04, 2023
Experimental proxy for dumping the unencrypted packet data from Brawl Stars (WIP)

Brawl Stars Proxy Experimental proxy for version 39.99 of Brawl Stars. It allows you to capture the packets being sent between the Brawl Stars client

4 Oct 29, 2021
A small C compiler written in Python for learning purposes

A small C compiler written in Python. Generates x64 Intel-format assembly, which is then assembled and linked by nasm and ld.

Scattered Thoughts 3 Oct 22, 2021
DOP-Tuning(Domain-Oriented Prefix-tuning model)

DOP-Tuning DOP-Tuning(Domain-Oriented Prefix-tuning model)代码基于Prefix-Tuning改进. Files ├── seq2seq # Code for encoder-decoder arch

Andrew Zeng 5 Nov 02, 2022
A simple and efficient computing package for Genshin Impact gacha analysis

GGanalysisLite计算包 这个版本的计算包追求计算速度,而GGanalysis包有着更多计算功能。 GGanalysisLite包通过卷积计算分布列,通过FFT和快速幂加速卷积计算。 测试玩家得到的排名值rank的数学意义是:与抽了同样数量五星的其他玩家相比,测试玩家花费的抽数大于等于比例

一棵平衡树 34 Nov 26, 2022
Cross-platform MachO/ObjC Static binary analysis tool & library. class-dump + otool + lipo + more

ktool Static Mach-O binary metadata analysis tool / information dumper pip3 install k2l Development is currently taking place on the @python3.10 branc

Kritanta 301 Dec 28, 2022
YBlade - Import QBlade blades into Fusion 360

YBlade - Import QBlade blades into Fusion 360 Simple script for Fusion 360 that takes QBlade blade description and constructs the blade: Usage First,

Jan Mrázek 37 Sep 25, 2022
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
A Desktop application for the signalum python library

Signalum Desktop A Desktop application on the Signalum Python Library/CLI Tool. The Signalum Desktop application is an attempt to develop a single too

BISOHNS 35 Feb 15, 2021
奇遇淘客服务器端

奇遇淘客 APP 服务器端 警告 正在使用 v0.2.0 版本的用户,请尽快升级到 v0.2.1。 v0.2.0 版本的 Docker 镜像中包含了有问题的 aiohttp。 奇遇淘客代码库 奇遇淘客 iOS APP 奇遇淘客 Android APP 奇遇淘客文档 服务器端文档 Docker 使用

奇遇科技 92 Nov 09, 2022
A utility control surface for Ableton Live that makes the initialization of a Mixdown quick

Automate Mixdown initialization A script that transfers all the VSTs on your MIDI tracks to a new track so you can freeze your MIDI tracks and then co

Aarnav 0 Feb 23, 2022
Fiber implements an proof-of-concept Python decorator that rewrites a function

Fiber implements an proof-of-concept Python decorator that rewrites a function so that it can be paused and resumed (by moving stack variables to a heap frame and adding if statements to simulate jum

Tyler Hou 225 Dec 13, 2022
Simplified web browser made in python for a college project

Python browser Simplified web browser made in python for a college project. Web browser has bookmarks, history, multiple tabs, toolbar. It was made on

AmirHossein Mohammadi 9 Jul 25, 2022
Tie together `drf-spectacular` and `djangorestframework-dataclasses` for easy-to-use apis and openapi schemas.

Speccify Tie together drf-spectacular and djangorestframework-dataclasses for easy-to-use apis and openapi schemas. Usage @dataclass class MyQ

Lyst 4 Sep 26, 2022
dbt (data build tool) adapter for Oracle Autonomous Database

dbt-oracle version 1.0.0 dbt (data build tool) adapter for the Oracle database. dbt "adapters" are responsible for adapting dbt's functionality to a g

Oracle 22 Nov 15, 2022
FBChecker Account using python , package requests and web old facebook

fbcek FBChecker Account using python , package requests and web old facebook using python 3.x apt upgrade -y apt update -y pkg install bash -y pkg ins

XnuxersXploitXen 5 Dec 24, 2022
A faster Python generator that get function results from multi-process workers

multiyield This package implements a Python generator that get function results from multi-process workers. The faster_fifo Queue (instead of the stan

Xin Du 1 Nov 18, 2021
Meaningful and minimalist release notes for developers

Managing manual release notes is hard. Therefore, everyone tends to generate release notes from commit messages. But, you won't get a meaningful release note at the end.

codezri 31 Dec 30, 2022
A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

A compiler for ARM, X86, MSP430, xtensa and more implemented in pure Python

Windel Bouwman 277 Dec 26, 2022