Code for pre-training CharacterBERT models (as well as BERT models).

Overview

Pre-training CharacterBERT (and BERT)

This is a repository for pre-training BERT and CharacterBERT.

DISCLAIMER: The code was largely adapted from an older version of NVIDIA's repository for benchmarking the pre-training of BERT using Automatic Mixed Precision. The original code was tweaked to include CharacterBERT and other minor elements.

Python Environment

First of all, we will need to have a Python environment with the required packages installed.

NOTE: This was tested with NVIDIA V100 (16GB/32GB) GPUs and a cuda 10.2 installation.

# Create a Python 3.8 environment via conda 
conda create --name pretraining python=3.8 -y
conda activate pretraining

# For showing progress bars
pip install tqdm

# For extracting raw text from Wikipedia dumps
cd external/
git clone https://github.com/attardi/wikiextractor.git
cd wikiextractor/
git checkout 6490f5361d7658208ad7f8e5deeb56ee0fe9e02f
cd ../..

# For parsing Wikiextractor outputs to get Wikipedia text
pip install beautifulsoup4

# For segmenting documents into sentences
pip install nltk
python -c "import nltk;nltk.download('punkt')"

# For saving pre-training data into .hdf5 files
pip install h5py

# For basic tokenization and BERT/CharacterBERT models in PyTorch
cd external/
git clone https://github.com/helboukkouri/transformers.git
cd transformers/
git checkout 756b8efa698aad0294735376bc147909d1e6b959
pip install -e .
cd ../..

# Actual PyTorch installation
conda install pytorch=1.7.1 cudatoolkit=10.2 -c pytorch -y

# For monitoring training progress
pip install tensorboard

# For using Automatic Mixed Precision (speeds up training) 
# NOTE: this will require some space in /tmp/ during compilation
cd external/
git clone https://github.com/NVIDIA/apex.git
cd apex/
git checkout a78ccf0b3e3f7130b3f157732dc8e8e651389922
pip install \
    -v --disable-pip-version-check --no-cache-dir \
    --global-option="--cpp_ext" --global-option="--cuda_ext" ./
cd ../..

# Configuration and vocabulary files for BERT (base, uncased)
mkdir ./data/bert-base-uncased/
cd ./data/bert-base-uncased/
wget https://huggingface.co/bert-base-uncased/resolve/main/config.json
wget https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt
cd ../..

# Configuration file for CharacterBERT (base, uncased)
mkdir ./data/character-bert/
cd ./data/character-bert/
wget https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json
cd ../..

Now we can move on to the corpus preparation step.

Corpus Preparation

Downloading the corpus

First, we will need to get a corpus of texts. Let's download and use the 2021-01-01 dump of English Wikipedia.

Assuming that:

  • the environment variable $WORKDIR contains a path to this repository

  • we have already activated our conda environment using: conda activate pretraining

We can run this command to download the wikipedia dump

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en'

If you don't want to download the whole dump you can experiment with a sample first by adding the --debug flag.

WORKDIR=$WORKDIR \
    python download_wikipedia.py --language='en' --debug

NOTE: if you use --debug then you will need to adapt all the commands by replacing the corpus name wikipedia_en with wikipedia_sample.

Extraction, Tokenization & Formatting

Since Wikipedia dumps come as a large .xml archives, we need to extract the process the file we just downloaded into a single .txt file with raw text. Then, we will need to format it in a specific way (one sentence per line and a blank line between sentences from different Wikipedia articles) to allow for generating examples for the Next Sentence Prediction task (NSP). We also tokenize each sentence to be able to easily generate Masked Language Modeling examples as well in future steps.

The following command runs both the extraction and formatting steps then removes the extracted document-level corpus only keeps the formatted sentence-level we need.

NOTE: you can remove the --delete_document_level_corpus flag to keep the original extracted corpus.

WORKDIR=$WORKDIR \
    python format_wikipedia.py \
        --archive_path=$WORKDIR/data/downloaded/wikipedia_en/wikipedia_en.xml.bz2 \
        --delete_document_level_corpus

After running the command above, you should be able to find a single text file in data/formatted/wikipedia_en/.

NOTE 1: if you want to use a corpus other than Wikipedia then add a component in utils/format and re-use the formatting step from format_wikipedia.py.

NOTE 2: if you want to process the whole English Wikipedia then run the command and forget about it, it will take a while... 😴 This process can probably be better optimized.

Pre-training Data generation

Now that we have our formatted Wikipedia corpus, there is one more step before we can actually run the pre-training. In fact, in order to pre-train models in a reasonable amount of time, we will be relying on multiple GPUs, DistributedDataParallel and the torch.distributed module. This will effectively have a copy of the model on each GPU, so we will need to split our corpus into shards (or chunks) so that each GPUs can process its own shard while others do the same.

First, we will split the corpus into 4096 training and 16 validation shards of equal size.

NOTE: you can change the amount of shards as you like. These numbers were chosen so to keep the memory requirement for loading a single shard relatively low as well as to keep validation steps (a single epoch through the validation shards) relatively fast.

WORKDIR=$WORKDIR \
    python make_shards.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt \
        --n_training_shards=4096 \
        --n_validation_shards=16 \
        --random_seed=42

The command above creates multiple training{n}.txt and validation.{n}.txt files in data/shards/wikipedia_en/.

The second and last step is to convert each shard into and .hdf5 file containing the actual pre-training data. But before doing that, we need to define a vocabulary for the Masked Language Modelling if we want to pre-train CharacterBERT.

NOTE 1: In fact, when pre-training BERT, since all original tokens from the corpus are split into elements of the WordPiece vocabulary, we can simply re-use this same vocabulary as a target space for MLM. And since CharacterBERT does not rely on WordPieces, it cannot do that and requires a fresh token vocabulary for Masked Language Modeling.

NOTE 2: Be careful when re-training a model from a domain A on texts from a domain B as this will require a new MLM vocabulary (for B) which in turn would require replacing the output layer in prior checkpoints (from A) before resuming pre-training. As for this version of the code, you will need to do that manually before running the pre-training.

WORKDIR=$WORKDIR \
    python build_mlm_vocabulary.py \
        --formatted_corpus_path=$WORKDIR/data/formatted/wikipedia_en/wikipedia_en.formatted.txt

After building a MLM vocabulary (in cases where we want to pre-train CharacterBERT) we can now generate the data for both phases 1 and 2 of the pre-training process.

  • phase 1: maximum input length of 128 and maximum number of masked tokens per input of 20.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/128_20/ \
        --max_input_length=128 \
        --max_masked_tokens_per_input=20 \
        --is_character_bert  # change this accordingly
  • phase 2: maximum input length of 512 and maximum number of masked tokens per input of 80.
WORKDIR=$WORKDIR \
    python make_hdf5.py \
        --shards_path=$WORKDIR/data/shards/wikipedia_en/ \
        --output_directory=$WORKDIR/data/hdf5/wikipedia_en/character_bert/512_80/ \
        --max_input_length=512 \
        --max_masked_tokens_per_input=80 \
        --is_character_bert  # change this accordingly

NOTE: if you want to generate data for BERT instead of CharacterBERT, remove the --is_character_bert flag and adapt the output_directory path.

Pre-training

Launching the pre-training

At this point we are all set to start pre-training models. For that, we can simply run the following bash scripts.

NOTE: you may need to change the value of WORKDIR in the pre-training scripts.

  • For phase 1:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_1.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_1.sh
  • For phase 2:
bash $WORKDIR/bash_scripts/run_pretraining.character_bert.step_2.sh

or

bash $WORKDIR/bash_scripts/run_pretraining.bert.step_2.sh

NOTE 1: you should change the NUM_GPUs variable inside the bash scripts to match the number of GPUs on your machine. The parallelization will be handled automatically.

NOTE 2: the bash scripts support distributed training on multiple gpus within a single node. Bash scripts that can run on multiple nodes with sbatch will be available soon.

Running the bash scripts on large enough corpora should produce good results. However, if you want to customize the pre-training process, you could change any of the parameters from pretrain_model.py.

For a complete list of parameters, run the following command.

WORKDIR=$WORKDIR python pretrain_model.py --help

In particular, if you don't want to run a validation step before each checkpoint you can remove the --do_validation flag. This will make the pre-training process faster but as a result you will not be able to tell if the language models are overfitting the training data.

Monitoring the pre-training

While the models are pre-training you can monitor the average training and validation losses (MLM + NSP loss) using TensorBoard.

tensorboard --logdir=$WORKDIR/.tensorboard_logs/

References

Please cite our paper if you use CharacterBERT in your work.

@inproceedings{el-boukkouri-etal-2020-characterbert,
    title = "{C}haracter{BERT}: Reconciling {ELM}o and {BERT} for Word-Level Open-Vocabulary Representations From Characters",
    author = "El Boukkouri, Hicham  and
      Ferret, Olivier  and
      Lavergne, Thomas  and
      Noji, Hiroshi  and
      Zweigenbaum, Pierre  and
      Tsujii, Jun{'}ichi",
    booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
    month = dec,
    year = "2020",
    address = "Barcelona, Spain (Online)",
    publisher = "International Committee on Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.coling-main.609",
    doi = "10.18653/v1/2020.coling-main.609",
    pages = "6903--6915",
    abstract = "Due to the compelling improvements brought by BERT, many recent representation models adopted the Transformer architecture as their main building block, consequently inheriting the wordpiece tokenization system despite it not being intrinsically linked to the notion of Transformers. While this system is thought to achieve a good balance between the flexibility of characters and the efficiency of full words, using predefined wordpiece vocabularies from the general domain is not always suitable, especially when building models for specialized domains (e.g., the medical domain). Moreover, adopting a wordpiece tokenization shifts the focus from the word level to the subword level, making the models conceptually more complex and arguably less convenient in practice. For these reasons, we propose CharacterBERT, a new variant of BERT that drops the wordpiece system altogether and uses a Character-CNN module instead to represent entire words by consulting their characters. We show that this new model improves the performance of BERT on a variety of medical domain tasks while at the same time producing robust, word-level, and open-vocabulary representations.",
}
Owner
Hicham EL BOUKKOURI
PhD Student working on Domain Adaptation of Word Embeddings.
Hicham EL BOUKKOURI
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
A PyTorch library for Vision Transformers

VFormer A PyTorch library for Vision Transformers Getting Started Read the contributing guidelines in CONTRIBUTING.rst to learn how to start contribut

Society for Artificial Intelligence and Deep Learning 142 Nov 28, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021