[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

Related tags

Deep LearningCONQUER
Overview

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival

PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival.

Task Definition

Given a natural language query, e.g., Addison is having a conversation with Bailey while checking on her baby, the problem of Video Corpus Moment Retrieval, is to locate a precise moment in a video retrieved from a large video corpus. And we are especially interested in the more pragmatic scenario, videos are additionally associated with the text descriptions such as subtitles or ASR (automatic speech transcript).

task_definition

Model Overiew

CONQUER:

  • Query-dependent Fusion (QDF)
  • Query-aware Feature Learning (QAL)
  • Moment localization (ML) head and optional video scoring (VS) head

model_overview

Getting started

Prerequisites

1 . Clone this repository

git clone https://github.com/houzhijian/CONQUER.git
cd CONQUER

2 . Prepare feature files and data

Download tvr_feature_release.tar.gz (21GB). After downloading the feature file, extract it to YOUR DATA STORAGE directory:

tar zxvf path/to/tvr_feature_release.tar.gz 

You should be able to see tvr_feature_release under YOUR DATA STORAGE directory.

It contains visual features (ResNet, SlowFast) obtained from HERO authors and text features (subtitle and query, from fine-tuned RoBERTa) obtained from XML authors. You can refer to the code to learn details on how the features are extracted: visual feature extraction, text feature extraction.

Then modify root_path inside config/tvr_data_config.json to your own root path for data storage.

3 . Install dependencies.

  • Python
  • PyTorch
  • Cuda
  • tensorboard
  • tqdm
  • lmdb
  • easydict
  • msgpack
  • msgpack_numpy

To install the dependencies use conda and pip, you need to have anaconda3 or miniconda3 installed first, then:

conda create --name conquer
conda activate conquer 
conda install python==3.7.9 numpy==1.19.2 pytorch==1.6.0 cudatoolkit=10.1 -c pytorch
conda install tensorboard==2.4.0 tqdm
pip install easydict lmdb msgpack msgpack_numpy

Training and Inference

NOTE: Currently only support train and inference using one gpu.

We give examples on how to perform training and inference for our CONQUER model.

1 . CONQUER training

bash scripts/TRAIN_SCRIPTS.sh EXP_ID CUDA_DEVICE_ID

TRAIN_SCRIPTS is a name string for training script. EXP_ID is a name string for current run. CUDA_DEVICE_ID is cuda device id.

Below are four examples of training CONQUER when

  • it adopts general similarity measure function without shared normalization training objective :
bash scripts/train_general.sh general 0 
  • it adopts general similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_general.sh general_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16
  • it adopts disjoint similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_disjoint.sh disjoint_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16
  • it adopts exclusive similarity measure function with three negative videos and extend pool size 1000:
bash scripts/train_sharednorm_exclusive_pretrain.sh exclusive_pretrain_extend1000_neg3 0 \
--use_extend_pool 1000 --neg_video_num 3 --bsz 16 --encoder_pretrain_ckpt_filepath YOUR_DATA_STORAGE_PATH/first_stage_trained_model/model.ckpt

NOTE: The training has randomness when we adopt shared normalization training objective, because we randomly sample negative videos via an adpative pool size. You will witness performance difference each time.

2 . CONQUER inference

After training, you can inference using the saved model on val or test_public set:

bash scripts/inference.sh MODEL_DIR_NAME CUDA_DEVICE_ID

MODEL_DIR_NAME is the name of the dir containing the saved model, e.g., tvr-general_extend1000_neg3-*. CUDA_DEVICE_ID is cuda device id.

By default, this code evaluates all the 3 tasks (VCMR, SVMR, VR), you can change this behavior by appending option, e.g. --tasks VCMR VR where only VCMR and VR are evaluated.

Below is one example of inference CONQUER which produce the best performance shown in paper.

2.1. Download the trained model tvr-conquer_general_paper_performance.tar.gz (173 MB). After downloading the trained model, extract it to the current directory:

tar zxvf tvr-conquer_general_paper_performance.tar.gz

You should be able to see results/tvr-conquer_general_paper_performance under the current directory.

2.2. Perform inference on validation split

bash scripts/inference.sh tvr-conquer_general_paper_performance 0 --nms_thd 0.7

We use non-maximum suppression (NMS) and set the threshold as 0.7, because NMS can contribute to a higher [email protected] and [email protected] score empirically.

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{hou2020conquer,
  title={CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval},
  author={Zhijian, Hou and  Chong-Wah, Ngo and Wing-Kwong Chan},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
  year={2021}
}

Acknowledgement

This code borrowed components from the following projects: TVRetrieval, HERO, HuggingFace, MMT, MME. We thank the authors for open-sourcing these great projects!

Contact

zjhou3-c [at] my.cityu.edu.hk

Owner
Hou zhijian
A PH.D student
Hou zhijian
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques Installation PyPI pip install colossalai Install

HPC-AI Tech 7.1k Jan 03, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Versatile Generative Language Model

Versatile Generative Language Model This is the implementation of the paper: Exploring Versatile Generative Language Model Via Parameter-Efficient Tra

Zhaojiang Lin 17 Dec 02, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis

OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis Overview OpenABC-D is a large-scale labeled dataset generate

NYU Machine-Learning guided Design Automation (MLDA) 31 Nov 22, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022