HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

Related tags

Deep LearningHSC4D
Overview

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

[Project page | Video]

Getting start

Dataset (Click here to download)

The large indoor and outdoor scenes in our dataset. Left: a climbing gym (1200 m2). Middle: a lab building with an outside courtyard 4000 m2. Right: a loop road scene 4600 m2

Data structure

Dataset root/
├── [Place_holder]/
|  ├── [Place_holder].bvh     # MoCap data from Noitom Axis Studio (PNStudio)
|  ├── [Place_holder]_pos.csv # Every joint's roration, generated from `*_bvh`
|  ├── [Place_holder]_rot.csv # Every joint's translation, generated from `*_bvh`
|  ├── [Place_holder].pcap    # Raw data from the LiDAR
|  └── [Place_holder]_lidar_trajectory.txt  # N×9 format file
├── ...
|
└── scenes/
   ├── [Place_holder].pcd
   ├── [Place_holder]_ground.pcd
   ├── ...
   └── ...
  1. Place_holder can be replaced to campus_raod, climbing_gym, and lab_building.
  2. *_lidar_trajectory.txt is generated by our Mapping method and manually calibrated with corresponding scenes.
  3. *_bvh and *_pcap are raw data from sensors. They will not be used in the following steps.
  4. You can test your SLAM algorithm by using *_pcap captured from Ouster1-64 with 1024×20Hz.

Preparation

  • Download basicModel_neutral_lbs_10_207_0_v1.0.0.pkl and put it in smpl directory.
  • Downloat the dataset and modify dataset_root and data_name in configs/sample.cfg.
dataset_root = /your/path/to/datasets
data_name = campus_road # or lab_building, climbing_gym

Requirement

Our code is tested under:

  • Ubuntu: 18.04
  • Python: 3.8
  • CUDA: 11.0
  • Pytorch: 1.7.0

Installation

conda create -n hsc4d python=3.8
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install open3d chumpy scipy configargparse matplotlib pathlib pandas opencv-python torchgeometry tensorboardx
  • Note: For mask conversion compatibility in PyTorch 1.7.0, you need to manually edit the source file in torchgeometry. Follow the guide here
  $ vi /home/dyd/software/anaconda3/envs/hsc4d/lib/python3.8/site-packages/torchgeometry/core/conversions.py

  # mask_c1 = mask_d2 * (1 - mask_d0_d1)
  # mask_c2 = (1 - mask_d2) * mask_d0_nd1
  # mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
  mask_c1 = mask_d2 * ~(mask_d0_d1)
  mask_c2 = ~(mask_d2) * mask_d0_nd1
  mask_c3 = ~(mask_d2) * ~(mask_d0_nd1)
  • Note: When nvcc fatal error occurs.
export TORCH_CUDA_ARCH_LIST="8.0" #nvcc complier error. nvcc fatal: Unsupported gpu architecture 

Preprocess

  • Transfer Mocap data [Optional, data provided]

    pip install bvhtoolbox # https://github.com/OlafHaag/bvh-toolbox
    bvh2csv /your/path/to/campus_road.bvh
    • Output: campus_road_pos.csv, campus_road_rot.csv
  • LiDAR mapping [Optional, data provided]

    • Process pcap file
      cd initialize
      pip install ouster-sdk 
      python ouster_pcap_to_txt.py -P /your/path/to/campus_road.pcap [-S start_frame] [-E end_frame]
    • Run your Mapping/SLAM algorithm.

    • Coordinate alignment (About 5 degree error after this step)

      1. The human stands as an A-pose before capture, and the human's face direction is regarded as scene's $Y$-axis direction.
      2. Rotate the scene cloud to make its $Z$-axis perpendicular to the starting position's ground.
      3. Translate the scene to make its origin to the first SMPL model's origin on the ground.
      4. LiDAR's ego motion $T^W$ and $R^W$ are translated and rotated as the scene does.
    • Output: campus_road_lidar_trajectory.txt, scenes/campus_road.pcd

  • Data preprocessing for optimization.

    python preprocess.py --dataset_root /your/path/to/datasets -fn campus_road -D 0.1

Data fusion

To be added

Data optimization

python main.py --config configs/sample.cfg

Visualization

To be added

Copyright

The HSC4D dataset is published under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.You must attribute the work in the manner specified by the authors, you may not use this work for commercial purposes and if you alter, transform, or build upon this work, you may distribute the resulting work only under the same license. Contact us if you are interested in commercial usage.

Bibtex

@misc{dai2022hsc4d,
    title={HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR},
    author={Yudi Dai and Yitai Lin and Chenglu Wen and Siqi Shen and Lan Xu and Jingyi Yu and Yuexin Ma and Cheng Wang},
    year={2022},
    eprint={2203.09215},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
Implementation of Research Paper "Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation"

Zero-DCE and Zero-DCE++(Lite architechture for Mobile and edge Devices) Papers Abstract The paper presents a novel method, Zero-Reference Deep Curve E

Tauhid Khan 15 Dec 10, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized C

Sam Bond-Taylor 139 Jan 04, 2023
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
Tool for installing and updating MiSTer cores and other files

MiSTer Downloader This tool installs and updates all the cores and other extra files for your MiSTer. It also updates the menu core, the MiSTer firmwa

72 Dec 24, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022