CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

Overview

CV Backbones

including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab.

News

2022/01/05 PyramidTNT: An improved TNT baseline is released.

2021/09/28 The paper of TNT (Transformer in Transformer) is accepted by NeurIPS 2021.

2021/09/18 The extended version of Versatile Filters is accepted by T-PAMI.

2021/08/30 GhostNet paper is selected as the Most Influential CVPR 2020 Papers.

2021/08/26 The codes of LegoNet and Versatile Filters has been merged into this repo.

2021/06/15 The code of TNT (Transformer in Transformer) has been released in this repo.

2020/10/31 GhostNet+TinyNet achieves better performance. See details in our NeurIPS 2020 paper: arXiv.

2020/06/10 GhostNet is included in PyTorch Hub.


GhostNet Code

This repo provides GhostNet pretrained models and inference code for TensorFlow and PyTorch:

For training, please refer to tinynet or timm.

TinyNet Code

This repo provides TinyNet pretrained models and inference code for PyTorch:

TNT Code

This repo provides training code and pretrained models of TNT (Transformer in Transformer) for PyTorch:

The code of PyramidTNT is also released:

LegoNet Code

This repo provides the implementation of paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters (ICML 2019)

Versatile Filters Code

This repo provides the implementation of paper Learning Versatile Filters for Efficient Convolutional Neural Networks (NeurIPS 2018)

Citation

@inproceedings{ghostnet,
  title={GhostNet: More Features from Cheap Operations},
  author={Han, Kai and Wang, Yunhe and Tian, Qi and Guo, Jianyuan and Xu, Chunjing and Xu, Chang},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{tinynet,
  title={Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets},
  author={Han, Kai and Wang, Yunhe and Zhang, Qiulin and Zhang, Wei and Xu, Chunjing and Zhang, Tong},
  booktitle={NeurIPS},
  year={2020}
}
@inproceedings{tnt,
  title={Transformer in transformer},
  author={Han, Kai and Xiao, An and Wu, Enhua and Guo, Jianyuan and Xu, Chunjing and Wang, Yunhe},
  booktitle={NeurIPS},
  year={2021}
}
@inproceedings{legonet,
    title={LegoNet: Efficient Convolutional Neural Networks with Lego Filters},
    author={Yang, Zhaohui and Wang, Yunhe and Liu, Chuanjian and Chen, Hanting and Xu, Chunjing and Shi, Boxin and Xu, Chao and Xu, Chang},
    booktitle={ICML},
    year={2019}
  }
@inproceedings{wang2018learning,
  title={Learning versatile filters for efficient convolutional neural networks},
  author={Wang, Yunhe and Xu, Chang and Chunjing, XU and Xu, Chao and Tao, Dacheng},
  booktitle={NeurIPS},
  year={2018}
}

Other versions of GhostNet

This repo provides the TensorFlow/PyTorch code of GhostNet. Other versions and applications can be found in the following:

  1. timm: code with pretrained model
  2. Darknet: cfg file, and description
  3. Gluon/Keras/Chainer: code
  4. Paddle: code
  5. Bolt inference framework: benckmark
  6. Human pose estimation: code
  7. YOLO with GhostNet backbone: code
  8. Face recognition: cavaface, FaceX-Zoo, TFace
Comments
  • TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    TypeError: __init__() got an unexpected keyword argument 'bn_tf'

    Hello, I want to ask what caused the following error when running the train.py file? thank you “ TypeError: init() got an unexpected keyword argument 'bn_tf' ”

    opened by ModeSky 16
  • Counting ReLU vs HardSwish FLOPs

    Counting ReLU vs HardSwish FLOPs

    Thank you very much for sharing the source code. I have a question related to FLOPs counting for ReLU and HardSwish. I saw in the paper the flops are the same in ReLU and HardSwish. Can you explain this situation? image

    opened by jahongir7174 10
  • kernel size in primary convolution of Ghost module

    kernel size in primary convolution of Ghost module

    Hi, It is said in your paper that the primary convolution in Ghost module can have customized kernel size, which is a major difference from existing efficient convolution schemes. However, it seems that in this code all the kernel size of primary convolution in Ghost module are set to [1, 1], and the kernel set in _CONV_DEFS_0 are only used in blocks of stride=2. Is it set intentionally?

    opened by YUHAN666 9
  • 用GhostModule替换Conv2d,loss降的很慢?

    用GhostModule替换Conv2d,loss降的很慢?

    我直接将efficientnet里面的MBConvBlock中的Conv2d替换为GhostModule: Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) 替换为 GhostModule(inp, oup), 其他参数不变,为什么损失比以前收敛的更慢了,一直降不下来?请问需要修改其他什么参数吗?

    opened by yc-cui 8
  • Training hyperparams on ImageNet

    Training hyperparams on ImageNet

    Hi, thanks for sharing such a wonderful work, I'd like to reproduce your results on ImageNet, could you please specify training parameters such as initial learning rate, how to decay it, batch size, etc. It would be even better if you can provide tricks to train GhostNet, such as label smoothing and data augmentation. Thx!

    good first issue 
    opened by sean-zhuh 8
  • Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    Why did you exclude EfficientNetB0 from Accuracy-Latency chart?

    @iamhankai Hi,

    Great work!

    1. Why did you exclude EfficientNetB0 (0.390 BFlops - 76.3% Top1) from Accuracy-Latency chart?

    2. Also what mini_batch_size did you use for training GhostNet?

    flops_latency

    opened by AlexeyAB 8
  • VIG pretrained weights

    VIG pretrained weights

    @huawei-noah-admin cna you please share the VIG pretraiend model on google drive or one drive as baidu is not accessible from our end

    THank in advance

    opened by abhigoku10 7
  • The implementation of Isotropic architecture

    The implementation of Isotropic architecture

    Hi, thanks for sharing this impressive work. The paper mentioned two architectures, Isotropic one and pyramid one. I noticed that in the code, this is a reduce_ratios, and this reduce_ratios are used by a avg_pooling operation to calculate before building the graph. I am wondering whether all I need to do is setting this reduce_ratios to [1,1,1,1] if I want to implement the Isotropic architecture. Thanks.

    self.n_blocks = sum(blocks) channels = opt.channels reduce_ratios = [4, 2, 1, 1] dpr = [x.item() for x in torch.linspace(0, drop_path, self.n_blocks)] num_knn = [int(x.item()) for x in torch.linspace(k, k, self.n_blocks)]

    opened by buptxiaofeng 6
  • Gradient overflow occurs while training tnt-ti model

    Gradient overflow occurs while training tnt-ti model

    ^@^@Train: 41 [ 0/625 ( 0%)] Loss: 4.564162 (4.5642) Time: 96.744s, 21.17/s (96.744s, 21.17/s) LR: 8.284e-04 Data: 94.025 (94.025) ^@^@^@^@Train: 41 [ 50/625 ( 8%)] Loss: 4.395192 (4.4797) Time: 2.742s, 746.96/s (7.383s, 277.38/s) LR: 8.284e-04 Data: 0.057 (4.683) ^@^@^@^@Train: 41 [ 100/625 ( 16%)] Loss: 4.424296 (4.4612) Time: 2.741s, 747.15/s (6.529s, 313.66/s) LR: 8.284e-04 Data: 0.056 (3.831) Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0 Gradient overflow. Skipping step, loss scaler 0 reducing loss scale to 16384.0

    And the top-1 acc is only 0.2 after 40 epochs.

    Any tips available here, dear @iamhankai @yitongh

    opened by jimmyflycv 6
  • Bloated model

    Bloated model

    Hi, I am using Ghostnet backbone for training YoloV3 model in Tensorflow, but I am getting a bloated model. The checkpoint data size is approx. 68MB, but the checkpoint given here is of approx 20MB https://github.com/huawei-noah/ghostnet/blob/master/tensorflow/models/ghostnet_checkpoint.data-00000-of-00001

    I am also training EfficientNet model with YoloV3 and that seems to be working fine, without any bloated size.

    Could anyone or the author please confirm if this is the correct architecture or anything seems weird? I have attached the Ghostnet architecture file out of the code.

    Thanks. ghostnet_model_arch.txt

    opened by ghost 6
  • Replace Conv2d in my network, however it becomes slower, why?

    Replace Conv2d in my network, however it becomes slower, why?

    Above all, thanks for your great work! It really inspires me a lot! But now I have a question.

    I replace all the Conv2d operations in my network except the final ones, the model parameters really becomes much more less. However, when testing, I found that the average forward time decreases a lot by the replacement (from 428FPS down to 354FPS). So, is this a normal phenomenon? Or is this because of the concat operation?

    opened by FunkyKoki 6
  • VIG for segmenation

    VIG for segmenation

    @iamhankai thanks for open-sourcing the code base . Can you please let me knw how to use the pvig for segmentation related activities its really helpful

    THanks in advance

    opened by abhigoku10 0
  • higher performance of ViG

    higher performance of ViG

    I try to train ViG-S on ImageNet and get 80.54% top1 accuracy, which is higher than that in paper, 80.4%. I wonder if 80.4 is the average of multiple trainings? If yes, how many reps do you use?

    opened by tdzdog 9
Releases(GhostNetV2)
Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021)

Beyond Image to Depth: Improving Depth Prediction using Echoes (CVPR 2021) Kranti Kumar Parida, Siddharth Srivastava, Gaurav Sharma. We address the pr

Kranti Kumar Parida 33 Jun 27, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression", TIP 2020

Tiny Obstacle Discovery by Occlusion-aware Multilayer Regression Official Matlab Implementation for "Tiny Obstacle Discovery by Occlusion-aware Multil

Xuefeng 5 Jan 15, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
In this project, two programs can help you take full agvantage of time on the model training with a remote server

In this project, two programs can help you take full agvantage of time on the model training with a remote server, which can push notification to your phone about the information during model trainin

GrayLee 8 Dec 27, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
A Simple Example for Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env

Imitation Learning with Dataset Aggregation (DAGGER) on Torcs Env This repository implements a simple algorithm for imitation learning: DAGGER. In thi

Hao 66 Nov 23, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style

Self-Supervised Learning with Data Augmentations Provably Isolates Content from Style [NeurIPS 2021] Official code to reproduce the results and data p

Yash Sharma 27 Sep 19, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
A minimal implementation of Gaussian process regression in PyTorch

pytorch-minimal-gaussian-process In search of truth, simplicity is needed. There exist heavy-weighted libraries, but as you know, we need to go bare b

Sangwoong Yoon 38 Nov 25, 2022
Semantic Segmentation with Pytorch-Lightning

This is a simple demo for performing semantic segmentation on the Kitti dataset using Pytorch-Lightning and optimizing the neural network by monitoring and comparing runs with Weights & Biases.

Boris Dayma 58 Nov 18, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023