Pre-Trained Image Processing Transformer (IPT)

Overview

Pre-Trained Image Processing Transformer (IPT)

By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, Wen Gao. [arXiv]

We study the low-level computer vision task (such as denoising, super-resolution and deraining) and develop a new pre-trained model, namely, image processing transformer (IPT). We present to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs. The IPT model is trained on these images with multi-heads and multi-tails. The pre-trained model can therefore efficiently employed on desired task after fine-tuning. With only one pre-trained model, IPT outperforms the current state-of-the-art methods on various low-level benchmarks.

MindSpore Code

Requirements

  • python 3
  • pytorch == 1.4.0
  • torchvision

Dataset

The benchmark datasets can be downloaded as follows:

For super-resolution:

Set5, Set14, B100, Urban100.

For denoising:

CBSD68, Urban100.

For deraining:

Rain100L.

The result images are converted into YCbCr color space. The PSNR is evaluated on the Y channel only.

Script Description

This is the inference script of IPT, you can following steps to finish the test of image processing tasks, like SR, denoise and derain, via the corresponding pretrained models.

Script Parameter

For details about hyperparameters, see option.py.

Evaluation

Pretrained models

The pretrained models are available in google drive

Evaluation Process

Inference example: For SR x2,x3,x4:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test Set5+Set14+B100+Urban100 --scale $SCALE

For Denoise 30,50:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --data_test CBSD68+Urban100 --scale 1 --denoise --sigma $NOISY_LEVEL

For derain:

python main.py --dir_data $DATA_PATH --pretrain $MODEL_PATH --scale 1 --derain

Results

  • Detailed results on image super-resolution task.
Method Scale Set5 Set14 B100 Urban100
VDSR X2 37.53 33.05 31.90 30.77
EDSR X2 38.11 33.92 32.32 32.93
RCAN X2 38.27 34.12 32.41 33.34
RDN X2 38.24 34.01 32.34 32.89
OISR-RK3 X2 38.21 33.94 32.36 33.03
RNAN X2 38.17 33.87 32.32 32.73
SAN X2 38.31 34.07 32.42 33.1
HAN X2 38.27 34.16 32.41 33.35
IGNN X2 38.24 34.07 32.41 33.23
IPT (ours) X2 38.37 34.43 32.48 33.76
Method Scale Set5 Set14 B100 Urban100
VDSR X3 33.67 29.78 28.83 27.14
EDSR X3 34.65 30.52 29.25 28.80
RCAN X3 34.74 30.65 29.32 29.09
RDN X3 34.71 30.57 29.26 28.80
OISR-RK3 X3 34.72 30.57 29.29 28.95
RNAN X3 34.66 30.52 29.26 28.75
SAN X3 34.75 30.59 29.33 28.93
HAN X3 34.75 30.67 29.32 29.10
IGNN X3 34.72 30.66 29.31 29.03
IPT (ours) X3 34.81 30.85 29.38 29.49
Method Scale Set5 Set14 B100 Urban100
VDSR X4 31.35 28.02 27.29 25.18
EDSR X4 32.46 28.80 27.71 26.64
RCAN X4 32.63 28.87 27.77 26.82
SAN X4 32.64 28.92 27.78 26.79
RDN X4 32.47 28.81 27.72 26.61
OISR-RK3 X4 32.53 28.86 27.75 26.79
RNAN X4 32.49 28.83 27.72 26.61
HAN X4 32.64 28.90 27.80 26.85
IGNN X4 32.57 28.85 27.77 26.84
IPT (ours) X4 32.64 29.01 27.82 27.26
  • Super-resolution result

  • Denoising result

  • Derain result

Citation

@misc{chen2020pre,
      title={Pre-Trained Image Processing Transformer}, 
      author={Chen, Hanting and Wang, Yunhe and Guo, Tianyu and Xu, Chang and Deng, Yiping and Liu, Zhenhua and Ma, Siwei and Xu, Chunjing and Xu, Chao and Gao, Wen},
      year={2021},
      eprint={2012.00364},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgement

Owner
HUAWEI Noah's Ark Lab
Working with and contributing to the open source community in data mining, artificial intelligence, and related fields.
HUAWEI Noah's Ark Lab
SE3 Pose Interp - Interpolate camera pose or trajectory in SE3, pose interpolation, trajectory interpolation

SE3 Pose Interpolation Pose estimated from SLAM system are always discrete, and

Ran Cheng 4 Dec 15, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Deep Hedging Demo Pricing Derivatives using Machine Learning 1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab. 2) Gui version: Run py

Yu Man Tam 102 Jan 06, 2023
Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Dense Deep Unfolding Network with 3D-CNN Prior for Snapshot Compressive Imaging, ICCV2021 [PyTorch Code]

Jian Zhang 20 Oct 24, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
MGFN: Multi-Graph Fusion Networks for Urban Region Embedding was accepted by IJCAI-2022.

Multi-Graph Fusion Networks for Urban Region Embedding (IJCAI-22) This is the implementation of Multi-Graph Fusion Networks for Urban Region Embedding

202 Nov 18, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022