HybridNets: End-to-End Perception Network

Overview

HybridNets: End2End Perception Network

logo
HybridNets Network Architecture.

Generic badge PyTorch - Version Python - Version

HybridNets: End-to-End Perception Network

by Dat Vu, Bao Ngo, Hung Phan 📧 FPT University

( 📧 ) corresponding author.

arXiv technical report (arXiv 2203.09035)

PWC PWC

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. Training Tips
  5. Results
  6. License
  7. Acknowledgements
  8. Citation

About The Project

HybridNets is an end2end perception network for multi-tasks. Our work focused on traffic object detection, drivable area segmentation and lane detection. HybridNets can run real-time on embedded systems, and obtains SOTA Object Detection, Lane Detection on BDD100K Dataset. intro

Project Structure

HybridNets
│   backbone.py                   # Model configuration
│   hubconf.py                    # Pytorch Hub entrypoint
│   hybridnets_test.py            # Image inference
│   hybridnets_test_videos.py     # Video inference
│   train.py                      # Train script
│   val.py                        # Validate script
│
├───encoders                      # https://github.com/qubvel/segmentation_models.pytorch/tree/master/segmentation_models_pytorch/encoders
│       ...
│
├───hybridnets
│       autoanchor.py             # Generate new anchors by k-means
│       dataset.py                # BDD100K dataset
│       loss.py                   # Focal, tversky (dice)
│       model.py                  # Model blocks
│
├───projects
│       bdd100k.yml               # Project configuration
│
└───utils
    │   plot.py                   # Draw bounding box
    │   smp_metrics.py            # https://github.com/qubvel/segmentation_models.pytorch/blob/master/segmentation_models_pytorch/metrics/functional.py
    │   utils.py                  # Various helper functions (preprocess, postprocess, eval...)
    │
    └───sync_batchnorm            # https://github.com/vacancy/Synchronized-BatchNorm-PyTorch/tree/master/sync_batchnorm 
            ...

Getting Started Open In Colab

Installation

The project was developed with Python>=3.7 and Pytorch>=1.10.

git clone https://github.com/datvuthanh/HybridNets
cd HybridNets
pip install -r requirements.txt

Demo

# Download end-to-end weights
mkdir weights
curl -L -o weights/hybridnets.pth https://github.com/datvuthanh/HybridNets/releases/download/v1.0/hybridnets.pth

# Image inference
python hybridnets_test.py -w weights/hybridnets.pth --source demo/image --output demo_result --imshow False --imwrite True

# Video inference
python hybridnets_test_videos.py -w weights/hybridnets.pth --source demo/video --output demo_result

# Result is saved in a new folder called demo_result

Usage

Data Preparation

Recommended dataset structure:

HybridNets
└───datasets
    ├───imgs
    │   ├───train
    │   └───val
    ├───det_annot
    │   ├───train
    │   └───val
    ├───da_seg_annot
    │   ├───train
    │   └───val
    └───ll_seg_annot
        ├───train
        └───val

Update your dataset paths in projects/your_project_name.yml.

For BDD100K: imgs, det_annot, da_seg_annot, ll_seg_annot

Training

1) Edit or create a new project configuration, using bdd100k.yml as a template

# mean and std of dataset in RGB order
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]

# bdd100k anchors
anchors_scales: '[2**0, 2**0.70, 2**1.32]'
anchors_ratios: '[(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)]'

# BDD100K officially supports 10 classes
# obj_list: ['person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle', 'bicycle', 'traffic light', 'traffic sign']
obj_list: ['car']
obj_combine: ['car', 'bus', 'truck', 'train']  # if single class, combine these classes into 1 single class in obj_list
                                               # leave as empty list ([]) to not combine classes

seg_list: ['road',
          'lane']

dataset:
  color_rgb: false
  dataroot: path/to/imgs
  labelroot: path/to/det_annot
  laneroot: path/to/ll_seg_annot
  maskroot: path/to/da_seg_annot
...

2) Train

python train.py -p bdd100k        # your_project_name
                -c 3              # coefficient of effnet backbone, result from paper is 3
                -n 4              # num_workers
                -b 8              # batch_size per gpu
                -w path/to/weight # use 'last' to resume training from previous session
                --freeze_det      # freeze detection head, others: --freeze_backbone, --freeze_seg
                --lr 1e-5         # learning rate
                --optim adamw     # adamw | sgd
                --num_epochs 200

Please check python train.py --help for every available arguments.

3) Evaluate

python val.py -p bdd100k -c 3 -w checkpoints/weight.pth

Training Tips

Anchors

If your dataset is intrinsically different from COCO or BDD100K, or the metrics of detection after training are not as high as expected, you could try enabling autoanchor in project.yml:

...
model:
  image_size:
  - 640
  - 384
need_autoanchor: true  # set to true to run autoanchor
pin_memory: false
...

This automatically finds the best combination of anchor scales and anchor ratios for your dataset. Then you can manually edit them project.yml and disable autoanchor.

If you're feeling lucky, maybe mess around with base_anchor_scale in backbone.py:

class HybridNetsBackbone(nn.Module):
  ...
  self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
  self.anchor_scale = [1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,]
  self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
  ...

and model.py:

class Anchors(nn.Module):
  ...
  for scale, ratio in itertools.product(self.scales, self.ratios):
    base_anchor_size = self.anchor_scale * stride * scale
    anchor_size_x_2 = base_anchor_size * ratio[0] / 2.0
    anchor_size_y_2 = base_anchor_size * ratio[1] / 2.0
  ...

to get a grasp on how anchor boxes work.

And because a picture is worth a thousand words, you can visualize your anchor boxes in Anchor Computation Tool.

Training stages

We experimented with training stages and found that this settings achieved the best results:

  1. --freeze_seg True ~ 100 epochs
  2. --freeze_backbone True --freeze_det True ~ 50 epochs
  3. Train end-to-end ~ 50 epochs

The reason being detection head is harder to converge early on, so we basically skipped segmentation head to focus on detection first.

Results

Traffic Object Detection

Result Visualization
Model Recall (%) [email protected] (%)
MultiNet 81.3 60.2
DLT-Net 89.4 68.4
Faster R-CNN 77.2 55.6
YOLOv5s 86.8 77.2
YOLOP 89.2 76.5
HybridNets 92.8 77.3

Drivable Area Segmentation

Result Visualization
Model Drivable mIoU (%)
MultiNet 71.6
DLT-Net 71.3
PSPNet 89.6
YOLOP 91.5
HybridNets 90.5

Lane Line Detection

Result Visualization
Model Accuracy (%) Lane Line IoU (%)
Enet 34.12 14.64
SCNN 35.79 15.84
Enet-SAD 36.56 16.02
YOLOP 70.5 26.2
HybridNets 85.4 31.6

License

Distributed under the MIT License. See LICENSE for more information.

Acknowledgements

Our work would not be complete without the wonderful work of the following authors:

Citation

If you find our paper and code useful for your research, please consider giving a star and citation 📝 :

@misc{vu2022hybridnets,
      title={HybridNets: End-to-End Perception Network}, 
      author={Dat Vu and Bao Ngo and Hung Phan},
      year={2022},
      eprint={2203.09035},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Comments
  • Lane color and Lane type Segmentation

    Lane color and Lane type Segmentation

    In the traffic light and traffic sign detection issue, you've mentioned that we just have to change the obj_list in project.yml by adding the classes needed. Does that apply to seg_list as well?

    If I want to detect lane color and lane type, can I change seg_list as follows

    seg_list: ['road', 'double white', 'double yellow', 'single white', 'single yellow', 'solid', 'dashed']

    Actually, I need classes like double solid yellow, double solid white, single solid yellow, single solid white, single dashed yellow, single dashed white, double dashed yellow, double dashed white, but BDD100K already has labeled double white, double yellow, single white, single yellow classes under Lane Categories and solid, dashed classes under Lane Styles

    Will the change in seg_list as shown above work, if not, how to do it

    opened by nannapaneni4 9
  • dataset link in colab doesnt work

    dataset link in colab doesnt work

    Hi,

    This link is required access permission. Could you help with it? https://drive.google.com/drive/folders/1iW9Darrars4xc9uHq2ZnRsWoJolCcyzg?usp=sharing

    opened by zehranrgi 4
  • Issue with FPS mistake in the article

    Issue with FPS mistake in the article

    Hello. First of all,thank you for this work.

    I noted you mistake the code about the inf_time and fps.

    So I think maybe you calculation the inference time incorrectly in the article , your article show that YOLOP have 52ms the infercence time per frame(batch size 1), which mean 20fps? (although 41 fps show in the YOLOP's article).

    And sadly in the hybridnets_test.py , i try calculate the HYBRIDNET's inference time but only get 0.06s(only model(x) ) ,which means 17-20fps. (Tesla v100 )but get 0.021s(only model(x) ) in YOLOP, which means 48 fps(Tesla v100 )

    Sadly , it may not faster than YOLOP and not reach the real-time.

    question 
    opened by hankplease 3
  • Did anyone successfully export onnx?

    Did anyone successfully export onnx?

    code as follows, but export nothing:

    weight_path = 'weights/hybridnets.pth'
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    params = Params(os.path.join(Path(__file__).resolve().parent, "projects/bdd100k.yml"))
    model = HybridNetsBackbone(num_classes=len(params.obj_list), compound_coef=3,
                               ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
                               seg_classes=len(params.seg_list), backbone_name=None)
    model.load_state_dict(torch.load(weight_path, map_location=device))
    model.eval()
    inputs = torch.randn(1, 3, 384, 640)
    print("begin to convert onnx")
    torch.onnx.export(model, inputs, 'HybridNetsBackbone.onnx',
                      verbose=False, opset_version=12, input_names=['images'])
    print("done")
    

    shell log:

    HybridNets/utils/utils.py:673: TracerWarning: torch.from_numpy results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.
      anchor_boxes = torch.from_numpy(anchor_boxes.astype(dtype)).to(image.device)
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    Warning: Constant folding - Only steps=1 can be constant folded for opset >= 10 onnx::Slice op. Constant folding not applied.
    
    ...
    ONNX export failed: Couldn't export Python operator SwishImplementation
    
    question 
    opened by aimuch 3
  • Evaluation results not accurate?

    Evaluation results not accurate?

    Hi, I've been trying to recreate your results from the Hybridnets paper. I've run the eval code on the 100k dataset but the results I'm getting are nowhere close to the actual results you presented in the paper. I'm sure I'm missing something here, could you please tell me what could possibly be going wrong here. I think the root locations that I'm giving are inaccurate.

    data root - raw images from the 100k dataset label root - I saved separate json file for each image from the "bdd100k_labels_images_val.json" that I downloaded from the bdd100k dataset. So in total I saved 10,000 separate json (one for each image) into another folder named "val". Road labels in Seg_list - I used the drivable masks Lane labels in Seg_list - I used the lane masks

    The output that I got after evaluation of 100 images: Screenshot from 2022-06-21 16-27-00

    The iou values are inconsistent with the ones mentioned in the paper, they are nowhere near them. I was also wondering why the precision is so low, is there a specific reason as to why there are so many false positives. I hope you can help me out, thanks.

    question 
    opened by luceeleven 3
  • Problem in Training stage

    Problem in Training stage

    Hello, I tried to follow your suggestion to train the model. So accordingly, at first I freeze the segmentation and trained for some epoch.

    python train.py -p bdd100k -c 3 -n 4 -b 8 --freeze_seg True --lr 1e-5 --optim adamw --num_epochs 75 --val_interval 1 --log_path D:\HybridNets\rgb-clean --saved_path D:\HybridNets\rgb-clean --save_interval 500 --verbose True --num_gpus 1 --plots True
    
    

    After that I am freezing the backbone and detection head.

    python train.py -p bdd100k -c 3 -n 4 -b 8 --freeze_backbone True --freeze_det True --lr 1e-5 --optim adamw --num_epochs 12 --val_interval 1 --log_path D:\HybridNets\rgb_clean --saved_path D:\HybridNets\rgb_clean --save_interval 500 --verbose True --num_gpus 1 --plots True -w D:\HybridNets\rgb-clean\bdd100k\hybridnets-d3_74_129225_best.pth
    

    But I am getting the error

    image

    Can you please suggest how to solve this issue?

    Thank you in advance

    question 
    opened by dreamer-1996 2
  • AssertionError BUG

    AssertionError BUG

    if i just want to seg one class,such as seg_list only have ’road‘. Then i run train.py , in loss.py line 538, in soft_tversky_score assert output.size() == target.size() AssertionError

    then i debug code,find output.size() = torch.Size([2, 1, 245760]) target.size() = torch.Size([2, 1, 491520])

    How to fix that???

    opened by harrylee999 2
  • IndexError: boolean index did not match indexed array along dimension 0

    IndexError: boolean index did not match indexed array along dimension 0

    Hello , when i put a image of size 1920*1080 for test,there is the following error. Can you please help me resolve this issue? Thank you! "IndexError: boolean index did not match indexed array along dimension 0; dimension is 1080 but corresponding boolean dimension is 720"

    opened by liuliaocheng 2
  • [Discussion] Gradient flow

    [Discussion] Gradient flow

    Back when we were toying with mosaic, we removed the segmentation head completely from the model and dataloader. Now that we try to add mosaic augmentation officially, we have to make a decision of not using it for segmentation training.

    hybridnets/dataset.py

    if self.use_mosaic:
        # honestly, mosaic is not for road and lane segmentation anyway
        # you cant expect road and lane to be split up in 4 separate corners in an image, do you?
        # only use mosaic with freeze_seg :)
        img, labels, seg_label, lane_label, (h0, w0), (h, w), path = self.load_mosaic(idx)
    

    Only images and object annotations are mosaic, while segmentation annotations are kept intact, which produces incorrect segmentation loss but that doesn't matter because we froze segmentation head anyway, thinking that requires_grad=False makes the segmentation head disappear from backprop graph. But that is wrong, the backbone is still affected by segmentation loss.

    Check this colab for interactive stuffs.

    So we've been planning to just straight ahead set the losses to 0 when you --freeze_head like this:

    cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot, seg_annot, obj_list=params.obj_list)
    cls_loss = cls_loss.mean() if not opt.freeze_det else 0
    reg_loss = reg_loss.mean() if not opt.freeze_det else 0
    seg_loss = seg_loss.mean() if not opt.freeze_seg else 0
    

    Is this approach too naive? Are there any recommendation regarding this matter? Or should we also mosaic the segmentation labels?

    help wanted question 
    opened by xoiga123 2
  • Could not use Pytorch quantization for model

    Could not use Pytorch quantization for model

    model_to_quantize = copy.deepcopy(model)

    qconfig_dict = {"": torch.quantization.get_default_qconfig('qnnpack')}

    model_to_quantize.eval()

    # prepare model_prepared = quantize_fx.prepare_fx(model_to_quantize, qconfig_dict)

    # calibrate (not shown) # quantize model_quantized = quantize_fx.convert_fx(model_prepared)

    When using Pytorch quantization example for your model, I get this following error:

    ~/Documents/DL_course_project/HybridNets/backbone.py in forward(self, inputs) 100 101 # p1, p2, p3, p4, p5 = self.backbone_net(inputs) 102 --> p2, p3, p4, p5 = self.encoder(inputs)[-4:] # self.backbone_net(inputs) 103 104 features = (p3, p4, p5) NameError: module is not installed as a submodule

    How can I avoid this error?

    help wanted 
    opened by tiendatAI 2
  • Drivable and Lane Type training

    Drivable and Lane Type training

    @datvuthanh thanks for sharing the code based i have following queries

    1. since bdd100k has different types of lanes eg double yellow, single white lane , dashed, can we use current source code to train for different lane types? is so what are the modifications need to be made int he code based
    2. Can we similar train the current source code with the driveable area and alternate drivable area labels ? if so what are the changes to be made

    Please share your thoughts Thanks in advance

    opened by abhigoku10 2
  • How to generate drivable area and lane masks?

    How to generate drivable area and lane masks?

    I know you shared a drive link for bdd100k drivable area and lane masks for the dataloader but I want to replicate it for understanding what to do for my custom dataset. I looked for bdd repo and there is "to_mask.py" which has some scripts to do it. It passes its own tests but I cannot get similar results as you shared. Can you please explain how to generate those masks? Thanks in advance.

    opened by eren-aydemir 0
  • Issue with FPS calculation code.

    Issue with FPS calculation code.

    Hello. First of all, great work.

    While running the hybridnets_test_videos.py I found some issues with the FPS calculation part. In the hybridnets_test_videos.py script, the FPS is calculated as: (t2-t1)/frame_count)

    But it seems that the above code will give the inference time per frame and not the FPS. Most probably it should be: 1/((t2-t1)/frame_count)) That is, we need to divide it by 1.

    Please let me know if any updates happen on this front.

    opened by sovit-123 1
  • The loss doesn't converge when training segmentation head only.

    The loss doesn't converge when training segmentation head only.

    I changed the backbone to Efficientnet-b0 and reduce the number of BiFPN layers from 6 to 1, in order to cut down the runtime of inference. After training 200 epochs with segmentation head frozen, I tried to train the model freezing backbone and detection head. But I found that the train loss of segmentation head dose not seem to converge. And the loss of valuation and mIOU are reducing at the same time, which doesn't make sense. Apart from that, I also found that when freezing segmentation head, the segmentation loss is not set to 0 in the code. which can affect the updating of weights in backbone, I suppose.

    bug help wanted 
    opened by bigsquirrel18 13
Releases(v1.0)
Owner
Thanh Dat Vu
Thanh Dat Vu
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Implementation of self-attention mechanisms for general purpose. Focused on computer vision modules. Ongoing repository.

Self-attention building blocks for computer vision applications in PyTorch Implementation of self attention mechanisms for computer vision in PyTorch

AI Summer 962 Dec 23, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
[CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment

RADN [CVPRW 2021] Code for Region-Adaptive Deformable Network for Image Quality Assessment [Paper on arXiv] Overview Update [2021/5/7] add codes for W

IIGROUP 53 Dec 28, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022