KoBART model on huggingface transformers

Overview

KoBART-Transformers

  • SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다.

Install (Optional)

  • BartModelPreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다.
pip install kobart-transformers

Tokenizer

  • PreTrainedTokenizerFast를 이용하여 구현되었습니다.
  • PreTrainedTokenizerFast.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_tokenizer
>>> # from transformers import PreTrainedTokenizerFast

>>> kobart_tokenizer = get_kobart_tokenizer()
>>> # kobart_tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunwoongko/kobart")

>>> kobart_tokenizer.tokenize("안녕하세요. 한국어 BART 입니다.🤣:)l^o")
['▁안녕하', '세요.', '▁한국어', '▁B', 'A', 'R', 'T', '▁입', '니다.', '🤣', ':)', 'l^o']

Model

  • BartModel을 이용하여 구현되었습니다.
  • BartModel.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_model, get_kobart_tokenizer
>>> # from transformers import BartModel

>>> kobart_tokenizer = get_kobart_tokenizer()
>>> model = get_kobart_model()
>>> # model = BartModel.from_pretrained("hyunwoongko/kobart")

>>> inputs = kobart_tokenizer(['안녕하세요.'], return_tensors='pt')
>>> model(inputs['input_ids'])
Seq2SeqModelOutput(last_hidden_state=tensor([[[-0.4488, -4.3651,  3.2349,  ...,  5.8916,  4.0497,  3.5468],
         [-0.4096, -4.6106,  2.7189,  ...,  6.1745,  2.9832,  3.0930]]],
       grad_fn=<TransposeBackward0>), past_key_values=None, decoder_hidden_states=None, decoder_attentions=None, cross_attentions=None, encoder_last_hidden_state=tensor([[[ 0.4624, -0.2475,  0.0902,  ...,  0.1127,  0.6529,  0.2203],
         [ 0.4538, -0.2948,  0.2556,  ..., -0.0442,  0.6858,  0.4372]]],
       grad_fn=<TransposeBackward0>), encoder_hidden_states=None, encoder_attentions=None)

For Seq2Seq Training

  • seq2seq 학습시에는 아래와 같이 get_kobart_for_conditional_generation()을 이용합니다.
  • BartForConditionalGeneration.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_for_conditional_generation
>>> # from transformers import BartForConditionalGeneration

>>> model = get_kobart_for_conditional_generation()
>>> # model = BartForConditionalGeneration.from_pretrained("hyunwoongko/kobart")

Updates Notes

version 0.1

  • pad 토큰이 설정되지 않은 에러를 해결하였습니다.
from kobart import get_kobart_tokenizer
kobart_tokenizer = get_kobart_tokenizer()
kobart_tokenizer(["한국어", "BART 모델을", "소개합니다."], truncation=True, padding=True)
{
'input_ids': [[28324, 3, 3, 3, 3], [15085, 264, 281, 283, 24224], [15630, 20357, 3, 3, 3]], 
'token_type_ids': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 
'attention_mask': [[1, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 0, 0, 0]]
}

version 0.1.3

  • get_kobart_for_conditional_generation()__init__.py에 등록하였습니다.

version 0.1.4

  • 누락되었던 special_tokens_map.json을 추가하였습니다.
  • 이제 pip install 없이 KoBART를 이용할 수 있습니다.
  • thanks to bernardscumm

Reference

Owner
Hyunwoong Ko
be a creator not a programmer.
Hyunwoong Ko
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

A crowdsourced dataset of dialogues grounded in social contexts involving utilization of commonsense.

Alexa 62 Dec 20, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022
A telegram bot to translate 100+ Languages

🔥 GOOGLE TRANSLATER 🔥 The owner would not be responsible for any kind of bans due to the bot. • ⚡ INSTALLING ⚡ • • 🔰 Deploy To Railway 🔰 • • ✅ OFF

Aɴᴋɪᴛ Kᴜᴍᴀʀ 5 Dec 20, 2021
Conditional Transformer Language Model for Controllable Generation

CTRL - A Conditional Transformer Language Model for Controllable Generation Authors: Nitish Shirish Keskar, Bryan McCann, Lav Varshney, Caiming Xiong,

Salesforce 1.7k Dec 28, 2022
Utilizing RBERT model for KLUE Relation Extraction task

RBERT for Relation Extraction task for KLUE Project Description Relation Extraction task is one of the task of Korean Language Understanding Evaluatio

snoop2head 14 Nov 15, 2022
💫 Industrial-strength Natural Language Processing (NLP) in Python

spaCy: Industrial-strength NLP spaCy is a library for advanced Natural Language Processing in Python and Cython. It's built on the very latest researc

Explosion 24.9k Jan 02, 2023
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
Transformer - A TensorFlow Implementation of the Transformer: Attention Is All You Need

[UPDATED] A TensorFlow Implementation of Attention Is All You Need When I opened this repository in 2017, there was no official code yet. I tried to i

Kyubyong Park 3.8k Dec 26, 2022
Natural Language Processing Specialization

Natural Language Processing Specialization In this folder, Natural Language Processing Specialization projects and notes can be found. WHAT I LEARNED

Kaan BOKE 3 Oct 06, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
A deep learning-based translation library built on Huggingface transformers

DL Translate A deep learning-based translation library built on Huggingface transformers and Facebook's mBART-Large 💻 GitHub Repository 📚 Documentat

Xing Han Lu 244 Dec 30, 2022
ChatterBot is a machine learning, conversational dialog engine for creating chat bots

ChatterBot ChatterBot is a machine-learning based conversational dialog engine build in Python which makes it possible to generate responses based on

Gunther Cox 12.8k Jan 03, 2023
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022