KoBART model on huggingface transformers

Overview

KoBART-Transformers

  • SKT에서 공개한 KoBART를 편리하게 사용할 수 있게 transformers로 포팅하였습니다.

Install (Optional)

  • BartModelPreTrainedTokenizerFast를 이용하면 설치하실 필요 없습니다.
pip install kobart-transformers

Tokenizer

  • PreTrainedTokenizerFast를 이용하여 구현되었습니다.
  • PreTrainedTokenizerFast.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_tokenizer
>>> # from transformers import PreTrainedTokenizerFast

>>> kobart_tokenizer = get_kobart_tokenizer()
>>> # kobart_tokenizer = PreTrainedTokenizerFast.from_pretrained("hyunwoongko/kobart")

>>> kobart_tokenizer.tokenize("안녕하세요. 한국어 BART 입니다.🤣:)l^o")
['▁안녕하', '세요.', '▁한국어', '▁B', 'A', 'R', 'T', '▁입', '니다.', '🤣', ':)', 'l^o']

Model

  • BartModel을 이용하여 구현되었습니다.
  • BartModel.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_model, get_kobart_tokenizer
>>> # from transformers import BartModel

>>> kobart_tokenizer = get_kobart_tokenizer()
>>> model = get_kobart_model()
>>> # model = BartModel.from_pretrained("hyunwoongko/kobart")

>>> inputs = kobart_tokenizer(['안녕하세요.'], return_tensors='pt')
>>> model(inputs['input_ids'])
Seq2SeqModelOutput(last_hidden_state=tensor([[[-0.4488, -4.3651,  3.2349,  ...,  5.8916,  4.0497,  3.5468],
         [-0.4096, -4.6106,  2.7189,  ...,  6.1745,  2.9832,  3.0930]]],
       grad_fn=<TransposeBackward0>), past_key_values=None, decoder_hidden_states=None, decoder_attentions=None, cross_attentions=None, encoder_last_hidden_state=tensor([[[ 0.4624, -0.2475,  0.0902,  ...,  0.1127,  0.6529,  0.2203],
         [ 0.4538, -0.2948,  0.2556,  ..., -0.0442,  0.6858,  0.4372]]],
       grad_fn=<TransposeBackward0>), encoder_hidden_states=None, encoder_attentions=None)

For Seq2Seq Training

  • seq2seq 학습시에는 아래와 같이 get_kobart_for_conditional_generation()을 이용합니다.
  • BartForConditionalGeneration.from_pretrained("hyunwoongko/kobart")와 동일합니다.
>>> from kobart_transformers import get_kobart_for_conditional_generation
>>> # from transformers import BartForConditionalGeneration

>>> model = get_kobart_for_conditional_generation()
>>> # model = BartForConditionalGeneration.from_pretrained("hyunwoongko/kobart")

Updates Notes

version 0.1

  • pad 토큰이 설정되지 않은 에러를 해결하였습니다.
from kobart import get_kobart_tokenizer
kobart_tokenizer = get_kobart_tokenizer()
kobart_tokenizer(["한국어", "BART 모델을", "소개합니다."], truncation=True, padding=True)
{
'input_ids': [[28324, 3, 3, 3, 3], [15085, 264, 281, 283, 24224], [15630, 20357, 3, 3, 3]], 
'token_type_ids': [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], 
'attention_mask': [[1, 0, 0, 0, 0], [1, 1, 1, 1, 1], [1, 1, 0, 0, 0]]
}

version 0.1.3

  • get_kobart_for_conditional_generation()__init__.py에 등록하였습니다.

version 0.1.4

  • 누락되었던 special_tokens_map.json을 추가하였습니다.
  • 이제 pip install 없이 KoBART를 이용할 수 있습니다.
  • thanks to bernardscumm

Reference

Owner
Hyunwoong Ko
be a creator not a programmer.
Hyunwoong Ko
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Simple, hackable offline speech to text - using the VOSK-API.

Simple, hackable offline speech to text - using the VOSK-API.

Campbell Barton 844 Jan 07, 2023
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022
wxPython app for converting encodings, modifying and fixing SRT files

Subtitle Converter Program za obradu srt i txt fajlova. Requirements: Python version 3.8 wxPython version 4.1.0 or newer Libraries: srt, PyDispatcher

4 Nov 25, 2022
Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision

Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Chenyang Huang 37 Jan 04, 2023
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Adversarial Purification with Score-based Generative Models by Jongmin Yoon, Sung Ju Hwang, Juho Lee This repository includes the official PyTorch imp

15 Dec 15, 2022
Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Code for the paper: Sequence-to-Sequence Learning with Latent Neural Grammars

Yoon Kim 43 Dec 23, 2022
Random-Word-Generator - Generates meaningful words from dictionary with given no. of letters and words.

Random Word Generator Generates meaningful words from dictionary with given no. of letters and words. This might be useful for generating short links

Mohammed Rabil 1 Jan 01, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks

Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre

THUNLP 2.3k Jan 08, 2023
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit".

Patience-based Early Exit Code for the paper "BERT Loses Patience: Fast and Robust Inference with Early Exit". NEWS: We now have a better and tidier i

Kevin Canwen Xu 54 Jan 04, 2023
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform

iSTFTNet : Fast and Lightweight Mel-spectrogram Vocoder Incorporating Inverse Short-time Fourier Transform This repo try to implement iSTFTNet : Fast

Rishikesh (ऋषिकेश) 126 Jan 02, 2023