Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

Overview

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation

License: MIT

[OpenReview] [arXiv] [Code]

The official implementation of GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022 Oral Presentation [54/3391]).

cover

Environments

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml
# Activate the environment
conda activate geodiff
# Install PyG
conda install pytorch-geometric=1.7.2=py37_torch_1.8.0_cu102 -c rusty1s -c conda-forge

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM) in this [google drive folder]. After downleading the dataset, it should be put into the folder path as specified in the dataset variable of config files ./configs/*.yml.

Prepare your own GEOM dataset from scratch (optional)

You can also download origianl GEOM full dataset and prepare your own data split. A guide is available at previous work ConfGF's [github page].

Training

All hyper-parameters and training details are provided in config files (./configs/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

# Default settings
python train.py ./config/qm9_default.yml
python train.py ./config/drugs_default.yml
# An ablation setting with fewer timesteps, as described in Appendix D.2.
python train.py ./config/drugs_1k_default.yml

The model checkpoints, configuration yaml file as well as training log will be saved into a directory specified by --logdir in train.py.

Generation

We provide the checkpoints of two trained models, i.e., qm9_default and drugs_default in the [google drive folder]. Note that, please put the checkpoints *.pt into paths like ${log}/${model}/checkpoints/, and also put corresponding configuration file *.yml into the upper level directory ${log}/${model}/.

Attention: if you want to use pretrained models, please use the code at the pretrain branch, which is the vanilla codebase for reproducing the results with our pretrained models. We recently notice some issue of the codebase and update it, making the main branch not compatible well with the previous checkpoints.

You can generate conformations for entire or part of test sets by:

python test.py ${log}/${model}/checkpoints/${iter}.pt \
    --start_idx 800 --end_idx 1000

Here start_idx and end_idx indicate the range of the test set that we want to use. All hyper-parameters related to sampling can be set in test.py files. Specifically, for testing qm9 model, you could add the additional arg --w_global 0.3, which empirically shows slightly better results.

Conformations of some drug-like molecules generated by GeoDiff are provided below.

Evaluation

After generating conformations following the obove commands, the results of all benchmark tasks can be calculated based on the generated data.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python eval_covmat.py ${log}/${model}/${sample}/sample_all.pkl

Task 2. Property Prediction

For the property prediction, we use a small split of qm9 different from the Conformation Generation task. This split is also provided in the [google drive folder]. Generating conformations and evaluate mean absolute errors (MAR) metric on this split can be done by the following commands:

python ${log}/${model}/checkpoints/${iter}.pt --num_confs 50 \
      --start_idx 0 --test_set data/GEOM/QM9/qm9_property.pkl
python eval_prop.py --generated ${log}/${model}/${sample}/sample_all.pkl

Visualizing molecules with PyMol

Here we also provide a guideline for visualizing molecules with PyMol. The guideline is borrowed from previous work ConfGF's [github page].

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Citation

Please consider citing the our paper if you find it helpful. Thank you!

@inproceedings{
xu2022geodiff,
title={GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation},
author={Minkai Xu and Lantao Yu and Yang Song and Chence Shi and Stefano Ermon and Jian Tang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=PzcvxEMzvQC}
}

Acknowledgement

This repo is built upon the previous work ConfGF's [codebase]. Thanks Chence and Shitong!

Contact

If you have any question, please contact me at [email protected] or [email protected].

Known issues

  1. The current codebase is not compatible with more recent torch-geometric versions.
  2. The current processed dataset (with PyD data object) is not compatible with more recent torch-geometric versions.
Owner
Minkai Xu
Research [email protected]. Previous:
Minkai Xu
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation)

Recall Loss for Semantic Segmentation (This repo implements the paper: Recall Loss for Semantic Segmentation) Download Synthia dataset The model uses

32 Sep 21, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
GANTheftAuto is a fork of the Nvidia's GameGAN

Description GANTheftAuto is a fork of the Nvidia's GameGAN, which is research focused on emulating dynamic game environments. The early research done

Harrison 801 Dec 27, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022