In-place Parallel Super Scalar Samplesort (IPS⁴o)

Related tags

Deep Learningips4o
Overview

In-place Parallel Super Scalar Samplesort (IPS⁴o)

This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Shared-memory) Sorting Algorithms, which contains an in-depth description of its inner workings, as well as an extensive experimental performance evaluation. Here's the abstract:

We present new sequential and parallel sorting algorithms that now represent the fastest known techniques for a wide range of input sizes, input distributions, data types, and machines. Somewhat surprisingly, part of the speed advantage is due to the additional feature of the algorithms to work in-place, i.e., they do not need a significant amount of space beyond the input array. Previously, the in-place feature often implied performance penalties. Our main algorithmic contribution is a blockwise approach to in-place data distribution that is provably cache-efficient. We also parallelize this approach taking dynamic load balancing and memory locality into account.

Our new comparison-based algorithm In-place Superscalar Samplesort (IPS⁴o), combines this technique with branchless decision trees. By taking cases with many equal elements into account and by adapting the distribution degree dynamically, we obtain a highly robust algorithm that outperforms the best previous in-place parallel comparison-based sorting algorithms by almost a factor of three. That algorithm also outperforms the best comparison-based competitors regardless of whether we consider in-place or not in-place, parallel or sequential settings.

Another surprising result is that IPS⁴o even outperforms the best (in-place or not in-place) integer sorting algorithms in a wide range of situations. In many of the remaining cases (often involving near-uniform input distributions, small keys, or a sequential setting), our new In-place Parallel Super Scalar Radix Sort (IPS²Ra) turns out to be the best algorithm.

Claims to have the -- in some sense -- "best" sorting algorithm can be found in many papers which cannot all be true. Therefore, we base our conclusions on an extensive experimental study involving a large part of the cross product of 21 state-of-the-art sorting codes, 6 data types, 10 input distributions, 4 machines, 4 memory allocation strategies, and input sizes varying over 7 orders of magnitude. This confirms the claims made about the robust performance of our algorithms while revealing major performance problems in many competitors outside the concrete set of measurements reported in the associated publications. This is particularly true for integer sorting algorithms giving one reason to prefer comparison-based algorithms for robust general-purpose sorting.

An initial version of IPS⁴o has been described in our publication on the 25th Annual European Symposium on Algorithms.

Usage

Clone this repository and check out its submodule

git clone --recurse-submodules https://github.com/ips4o/ips4o.git

or use the following commands instead if you want to include this repository as a submodule:

git submodule add https://github.com/ips4o/ips4o.git
git submodule update --recursive --init

IPS⁴o provides a CMake library for simple usage:

add_subdirectory(<path-to-the-ips4o-repository>)
target_link_libraries(<your-target> PRIVATE ips4o)

A minimal working example:

#include "ips4o.hpp"

// sort sequentially
ips4o::sort(begin, end[, comparator]);

// sort in parallel (uses OpenMP if available, std::thread otherwise)
ips4o::parallel::sort(begin, end[, comparator]);

The parallel version of IPS⁴o requires 16-byte atomic compare-and-exchange instructions to run the fastest. Most CPUs and compilers support 16-byte compare-and-exchange instructions nowadays. If the CPU in question does so, IPS⁴o uses 16-byte compare-and-exchange instructions when you set your CPU correctly (e.g., -march=native) or when you enable the instructions explicitly (-mcx16). In this case, you also have to link against GCC's libatomic (-latomic). Otherwise, we emulate some 16-byte compare-and-exchange instructions with locks which may slightly mitigate the performance of IPS⁴o.

If you use the CMake example shown above, we automatically optimize IPS⁴o for the native CPU (e.g., -march=native). You can disable the CMake property IPS4O_OPTIMIZE_FOR_NATIVE to avoid native optimization and you can enable the CMake property IPS4O_USE_MCX16 if you compile with GCC or Clang to enable 16-byte compare-and-exchange instructions explicitly.

IPS⁴o uses C++ threads if not specified otherwise. If you prefer OpenMP threads, you need to enable OpenMP threads, e.g., enable the CMake property IPS4O_USE_OPENMP or add OpenMP to your target. If you enable the CMake property DISABLE_IPS4O_PARALLEL, most of the parallel code will not be compiled and no parallel libraries will be linked. Otherwise, CMake automatically enables C++ threads (e.g., -pthread) and links against TBB and GCC's libatomic. (Only when you compile your code for 16-byte compare-and-exchange instructions you need libatomic.) Thus, you need the Thread Building Blocks (TBB) library to compile and execute the parallel version of IPS⁴o. We search for TBB with find_package(TBB REQUIRED). If you want to execute IPS⁴o in parallel but your TBB library is not accessible via find_package(TBB REQUIRED), you can still compile IPS⁴o with parallel support. Just enable the CMake property DISABLE_IPS4O_PARALLEL, enable C++ threads for your own target and link your own target against your TBB library (and also link your target against libatomic if you want 16-byte atomic compare-and-exchange instruction support).

If you do not set a CMake build type, we use the build type Release which disables debugging (e.g., -DNDEBUG) and enables optimizations (e.g., -O3).

Currently, the code does not compile on Windows.

Licensing

IPS⁴o is free software provided under the BSD 2-Clause License described in the LICENSE file. If you use this implementation of IPS⁴o in an academic setting please cite the paper Engineering In-place (Shared-memory) Sorting Algorithms using the BibTeX entry

@misc{axtmann2020engineering,
  title =	 {Engineering In-place (Shared-memory) Sorting Algorithms},
  author =	 {Michael Axtmann and Sascha Witt and Daniel Ferizovic and Peter Sanders},
  howpublished = {Computing Research Repository (CoRR)},
  year =	 {Sept. 2020},
  archivePrefix ={arXiv},
  eprint =	 {2009.13569},
}
Source Code of NeurIPS21 paper: Recognizing Vector Graphics without Rasterization

YOLaT-VectorGraphicsRecognition This repository is the official PyTorch implementation of our NeurIPS-2021 paper: Recognizing Vector Graphics without

Microsoft 49 Dec 20, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
Unsupervised Discovery of Object Radiance Fields

Unsupervised Discovery of Object Radiance Fields by Hong-Xing Yu, Leonidas J. Guibas and Jiajun Wu from Stanford University. arXiv link: https://arxiv

Hong-Xing Yu 148 Nov 30, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection, AAAI 2021.

Co-mining: Self-Supervised Learning for Sparsely Annotated Object Detection This repository is an official implementation of the AAAI 2021 paper Co-mi

MEGVII Research 20 Dec 07, 2022
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Main Results on ImageNet with Pretrained Models

This repository contains Pytorch evaluation code, training code and pretrained models for the following projects: SPACH (A Battle of Network Structure

Microsoft 151 Dec 14, 2022