(EI 2022) Controllable Confidence-Based Image Denoising

Related tags

Deep LearningCCID
Overview

Image Denoising with Control over Deep Network Hallucination

Paper and arXiv preprint

-- Our frequency-domain insights derive from SFM and the concept of restoration reliability from BUIFD and BIGPrior --

Authors: Qiyuan Liang, Florian Cassayre, Haley Owsianko, Majed El Helou, and Sabine Süsstrunk

Python 3.7 pytorch 1.8.1

CCID framework

The figure below illustrates the CCID framework. By exploiting a reliable filter in parallel with a deep network, fused in the frequency domain, it enables users to control the hallucination contributions of the deep network and safeguard against its failures.

Abstract: Deep image denoisers achieve state-of-the-art results but with a hidden cost. As witnessed in recent literature, these deep networks are capable of overfitting their training distributions, causing inaccurate hallucinations to be added to the output and generalizing poorly to varying data. For better control and interpretability over a deep denoiser, we propose a novel framework exploiting a denoising network. We call it controllable confidence-based image denoising (CCID). In this framework, we exploit the outputs of a deep denoising network alongside an image convolved with a reliable filter. Such a filter can be a simple convolution kernel which does not risk adding hallucinated information. We propose to fuse the two components with a frequency-domain approach that takes into account the reliability of the deep network outputs. With our framework, the user can control the fusion of the two components in the frequency domain. We also provide a user-friendly map estimating spatially the confidence in the output that potentially contains network hallucination. Results show that our CCID not only provides more interpretability and control, but can even outperform both the quantitative performance of the deep denoiser and that of the reliable filter. We show deep network hallucination can be exploited when the test data are similar to the training data, but is otherwise detrimental.

Structure overview

The code is structured as follows: pipeline.py and pipeline_no_gui.py implement the overall logic of the pipeline. All denoiser related code is stored inside the denoiser folder, confidence prediction code in the confidence folder, and frequency-domain fusion related code in the fusion folder. The library folder contains the datasets and deep learning models that we use for evaluation.

Run the program

  • With visualization:
    python3 -m CCID.pipeline
    For the visualization to work, you might need to install the tkinter module if it is not already present. Users can use the left and right arrows to switch the selected images.
  • Without visualization:
    python3 -m CCID.pipeline_no_gui
    The list of arguments can be retrieved with the --help flag.

Confidence prediction network

In the confidence folder, there are
(1) data_generation.py generates the data used for training the confidence prediction network. Given the clean image, our current implementation augments the data by rotating, flipping, and scaling. A random Gaussian noise component with level ranging in 0-100 is added to the image to simulate the scenario of out-of-distribution noise levels. It may be extended to include also different noise types and different image domains.

(2) confidence_train.py trains the novel confidence prediction network. The training argumentation is not given in args, but is a built-in value inside the file.

(3) confidence.py provides the high-level confidence prediction (testing) API: the prediction is performed given the noisy image and its denoised version, the result is a confidence map with lower resolution.

Citation

@article{liang2022image,
    title   = {Image Denoising with Control over Deep Network Hallucination},
    author  = {Liang, Qiyuan and Cassayre, Florian and Owsianko, Haley and El Helou, Majed and S\"usstrunk, Sabine},
    journal = {IS&T Electronic Imaging Proceedings, Computational Imaging XX},
    year    = {2022}
}
Owner
Images and Visual Representation Laboratory (IVRL) at EPFL
Code associated with our published research
Images and Visual Representation Laboratory (IVRL) at EPFL
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Active and Sample-Efficient Model Evaluation

Active Testing: Sample-Efficient Model Evaluation Hi, good to see you here! 👋 This is code for "Active Testing: Sample-Efficient Model Evaluation". P

Jannik Kossen 19 Oct 30, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022