An end-to-end implementation of intent prediction with Metaflow and other cool tools

Overview

You Don't Need a Bigger Boat

An end-to-end (Metaflow-based) implementation of an intent prediction flow for kids who can't MLOps good and wanna learn to do other stuff good too.

This is a WIP - check back often for updates.

Philosophical Motivations

There is plenty of tutorials and blog posts around the Internet on data pipelines and tooling. However:

  • they (for good pedagogical reasons) tend to focus on one tool / step at a time, leaving us to wonder how the rest of the pipeline works;
  • they (for good pedagogical reasons) tend to work in a toy-world fashion, leaving us to wonder what would happen when a real dataset and a real-world problem enter the scene.

This repository (and soon-to-be-drafted written tutorial) aims to fill these gaps. In particular:

  • we provide open-source working code that glues together what we believe are some of the best tools in the ecosystem, going all the way from raw data to a deployed endpoint serving predictions;
  • we run the pipeline under a realistic load for companies at "reasonable scale", leveraging a huge open dataset we released in 2021; moreover, we train a model for a real-world use case, and show how to monitor it after deployment.

The repo may also be seen as a (very opinionated) introduction to modern, PaaS-like pipelines; while there is obviously room for disagreement over tool X or tool Y, we believe the general principles to be sound for companies at "reasonable scale": in-between bare-bone infrastructure for Tech Giants, and ready-made solutions for low-code/simple scenarios, there is a world of exciting machine learning at scale for sophisticated practitioners who don't want to waste their time managing cloud resources.

Overview

The repo shows how several (mostly open-source) tools can be effectively combined together to run data pipelines. The project current features:

The following picture from our Recsys paper (forthcoming) gives a quick overview of such a pipeline:

Recsys flow

We provide two versions of the pipeline, depending on the sophistication of the setup:

  • a Metaflow-only version, which runs from static data files (see below) to Sagemaker as a single Flow, and can be run from a Metaflow-enabled laptop without much additional setup;
  • a data warehouse version, which runs in a more realistic setup, reading data from Snowflake and using an external orchestrator to run the steps. In this setup, the downside is that a Snowflake and a Prefect Cloud accounts are required (nonetheless, both are veasy to get); the upside is that the pipeline reflects almost perfectly a real setup, and Metaflow can be used specifically for the ML part of the process.

The parallelism between the two scenarios should be pretty clear by looking at the two projects: if you are familiarizing with all the tools for the first time, we suggest you to start from the Metaflow version and then move to the full-scale one when all the pieces of the puzzle are well understood.

Relevant Material

If you want to know more, you can give a look at the following material:

TBC

Status Update

July 2021

End-2-end flow working for remote and local projects; started standardizing Prefect agents with Docker and adding other services (monitoring, feature store etc.).

TO-DOs:

  • dockerize the local flow;
  • write-up all of this as a blog post;
  • improve code / readability / docs, add potentially some more pics and some videos;
  • providing an orchestrator-free version, by using step functions to manage the steps;
  • finish feature store and gantry integration;
  • add Github Action flow;
  • continue improving the DAG card project.

Setup

General Prerequisites (do this first!)

Irrespectively of the flow you wish to run, some general tools need to be in place: Metaflow of course, as the heart of our ML practice, but also data and AWS users/roles. Please go through the general items below before tackling the flow-specific instructions.

After you finish the prerequisites below, you can run the flow you desire: each folder - remote and local - contains a specific README which should allow you to quickly run the project end-to-end: please refer to that documentation for flow-specific instructions (check back often for updates).

Dataset

The project leverages the open dataset from the 2021 Coveo Data Challenge: the dataset can be downloaded directly from here (refer to the full README for terms and conditions). Data is freely available under a research-friendly license - for background information on the dataset, the use cases and relevant work in the ML literature, please refer to the accompanying paper.

Once you download and unzip the dataset in a local folder of your choice (the zip contains 3 files, browsing_train.csv, search_train.csv, sku_to_content.csv), write down their location as an absolute path (e.g. /Users/jacopo/Documents/data/train/browsing_train.csv): both projects need to know where the dataset is.

AWS

Both projects - remote and local - use AWS services extensively - and by design: this ties back to our philosophy of PaaS-whenever-possible, and play nicely with our core adoption of Metaflow. While you can setup your users in many functionally equivalent ways, note that if you want to run the pipeline from ingestion to serving you need to be comfortable with the following AWS interactions:

  • Metaflow stack (see below): we assume you installed the Metaflow stack and can run it with an AWS profile of your choice;
  • Serverless stack (see below): we assume you can run serverless deploy in your AWS stack;
  • Sagemaker user: we assume you have an AWS user with permissions to manage Sagemaker endpoints (it may be totally distinct from any other Metaflow user).

TBC

Serverless

We wrap Sagemaker predictions in a serverless REST endpoint provided by AWS Lambda and API Gateway. To manage the lambda stack we use Serverless as a wrapper around AWS infrastructure.

TBC

Metaflow

Metaflow: Configuration

If you have an AWS profile configured with a metaflow-friendly user, and you created metaflow stack with CloudFormation, you can run the following command with the resources created by CloudFormation to set up metaflow on AWS:

metaflow configure aws --profile metaflow

Remember to use METAFLOW_PROFILE=metaflow to use this profile when running a flow. Once you completed the setup, you can run flow_playground.py to test the AWS setup is working as expected (in particular, GPU batch jobs can run correctly). To run the flow with the custom profile created, you should do:

METAFLOW_PROFILE=metaflow python flow_playground.py run

Metaflow: Tips & Tricks
  1. Parallelism Safe Guard
    • The flag --max-workers should be used to limit the maximum number of parallel steps
    • For example METAFLOW_PROFILE=metaflow python flow_playground.py run --max-workers 8 limits the maximum number of parallel tasks to 8
  2. Environment Variables in AWS Batch
    • The @environment decorator is used in conjunction with @batch to pass environment variables to AWS Batch, which will not directly have access to env variables on your local machine
    • In the local example, we use @environemnt to pass the Weights & Biases API Key (amongst other things)
  3. Resuming Flows
    • Resuming flows is useful during development to avoid re-running compute/time intensive steps such as data preparation
    • METAFLOW_PROFILE=metaflow python flow_playground.py resume <STEP_NAME> --origin-run-id <RUN_ID>
  4. Local-Only execution
    • It may sometimes be useful to debug locally (i.e to avoid Batch startup latency), we introduce a wrapper enable_decorator around the @batch decorator which enables or disables a decorator's functionality
    • We use this in conjunction with an environment variable EN_BATCH to toggle the functionality of all @batch decorators.

FAQ

  1. Both projects deal with data that has already been ingested/transmitted to the pipeline, but are silent on data collection. Any serverless option there as well?

    Yes. In e-commerce use cases, for example, pixel tracking is standard (e.g. Google Analytics), so a serverless /collect endpoint can be used to get front-end data and drop it in a pure PaaS pipeline with Firehose and Snowpipe, for example. While a bit out-dated for some details, we championed exactly this approach a while ago: if you want to know more, you can start from this Medium post and old code.

TBC

How to Cite our Work

If you find our principles, code or data useful, please cite our work:

Paper (forthcoming in RecSys2021)

@inproceedings{10.1145/3460231.3474604,
author = {Tagliabue, Jacopo},
title = {You Do Not Need a Bigger Boat: Recommendations at Reasonable Scale in a (Mostly) Serverless and Open Stack},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3460231.3474604},
doi = {10.1145/3460231.3474604},
series = {RecSys '21}
}

Data

@inproceedings{CoveoSIGIR2021,
author = {Tagliabue, Jacopo and Greco, Ciro and Roy, Jean-Francis and Bianchi, Federico and Cassani, Giovanni and Yu, Bingqing and Chia, Patrick John},
title = {SIGIR 2021 E-Commerce Workshop Data Challenge},
year = {2021},
booktitle = {SIGIR eCom 2021}
}
Owner
Jacopo Tagliabue
I failed the Turing Test once, but that was many friends ago.
Jacopo Tagliabue
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Official PyTorch Implementation of HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning (NeurIPS 2021 Spotlight)

[NeurIPS 2021 Spotlight] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning [Paper] This is Official PyTorch implementatio

42 Nov 01, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Learning Logic Rules for Document-Level Relation Extraction

LogiRE Learning Logic Rules for Document-Level Relation Extraction We propose to introduce logic rules to tackle the challenges of doc-level RE. Equip

41 Dec 26, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022