3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

Overview

3rd Place Solution of Traffic4Cast 2021 Core Challenge

This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge.

Paper

Our solution is described in the "Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation" paper.

If you wish to cite this code, please do it as follows:

@misc{konyakhin2021solving,
      title={Solving Traffic4Cast Competition with U-Net and Temporal Domain Adaptation}, 
      author={Vsevolod Konyakhin and Nina Lukashina and Aleksei Shpilman},
      year={2021},
      eprint={2111.03421},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Competition and Demonstration Track @ NeurIPS 2021

Learnt parameters

The models' learnt parameters are available by the link: https://drive.google.com/file/d/1zD0CecX4P3v5ugxaHO2CQW9oX7_D4BCa/view?usp=sharing
Please download the archive and unzip it into the weights folder of the repository, so its structure looks like the following:

├── ...
├── traffic4cast
├── weights
│   ├── densenet                 
│   │   ├── BERLIN_1008_1430_densenet_unet_mse_best_val_loss_2019=78.4303.pth                     
│   │   ├── CHICAGO_1010_1730_densenet_unet_mse_best_val_loss_2019=41.1579.pth
│   │   └── MELBOURNE_1009_1619_densenet_unet_mse_best_val_loss_2019=25.7395.pth    
│   ├── effnetb5
│   │   ├── BERLIN_1008_1430_efficientnetb5_unet_mse_best_val_loss_2019=80.3510.pth    
│   │   ├── CHICAGO_1012_1035_efficientnetb5_unet_mse_best_val_loss_2019=41.6425.pth
│   │   ├── ISTANBUL_1012_2315_efficientnetb5_unet_mse_best_val_loss_2019=55.7918.pth    
│   │   └── MELBOURNE_1010_0058_efficientnetb5_unet_mse_best_val_loss_2019=26.0132.pth    
│   └── unet
│       ├── BERLIN_0806_1425_vanilla_unet_mse_best_val_loss_2019=0.0000_v5.pth    
│       ├── CHICAGO_0805_0038_vanilla_unet_mse_best_val_loss_2019=42.6634.pth
│       ├── ISTANBUL_0805_2317_vanilla_unet_mse_best_val_loss_2019=0.0000_v4.pth
│       └── MELBOURNE_0804_1942_vanilla_unet_mse_best_val_loss_2019=26.7588.pth
├── ...

Submission reproduction

To generate the submission file, please run the following script:

# $1 - absolute path to the dataset, $2 device to run inference
sh submission.sh {absolute path to dataset} {cpu, cuda}
# Launch example
sh submission.sh /root/data/traffic4cast cuda

The above sctipt generates the submission file submission/submission_all_unets_da_none_mpcpm1_mean_temporal_{date}.zip, which gave us the best MSE of 49.379068541527 on the final leaderboard.

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
Tgbox-bench - Simple TGBOX upload speed benchmark

TGBOX Benchmark This script will benchmark upload speed to TGBOX storage. Build

Non 1 Jan 09, 2022
Multiple-Object Tracking with Transformer

TransTrack: Multiple-Object Tracking with Transformer Introduction TransTrack: Multiple-Object Tracking with Transformer Models Training data Training

Peize Sun 537 Jan 04, 2023
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
MiniSom is a minimalistic implementation of the Self Organizing Maps

MiniSom Self Organizing Maps MiniSom is a minimalistic and Numpy based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial N

Giuseppe Vettigli 1.2k Jan 03, 2023
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
VD-BERT: A Unified Vision and Dialog Transformer with BERT

VD-BERT: A Unified Vision and Dialog Transformer with BERT PyTorch Code for the following paper at EMNLP2020: Title: VD-BERT: A Unified Vision and Dia

Salesforce 44 Nov 01, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022