Graph parsing approach to structured sentiment analysis.

Overview

Fine-grained Sentiment Analysis as Dependency Graph Parsing

This repository contains the code and datasets described in following paper: Fine-grained Sentiment Analysis as Dependency Graph Parsing.

Problem description

Fine-grained sentiment analysis can be theoretically cast as an information extraction problem in which one attempts to find all of the opinion tuples $O = O_i,\ldots,O_n$ in a text. Each opinion $O_i$ is a tuple $(h, t, e, p)$

where $h$ is a \textbf {holder} who expresses a \textbf{polarity} $p$ towards a \textbf{target} $t$ through a \textbf{sentiment expression} $e$, implicitly defining the relationships between these elements.

The two examples below (first in English, then in Basque) show the conception of sentiment graphs.

multilingual example

Rather than treating this as a sequence-labeling task, we can treat it as a bilexical dependency graph prediction task, although some decisions must me made. We create two versions (a) head-first and (b) head-final, shown below:

bilexical

Requirements

  1. python3
  2. pytorch
  3. matplotlib
  4. sklearn
  5. gensim
  6. numpy
  7. h5py
  8. transformers
  9. tqdm

Data collection and preprocessing

We provide the preprocessed bilexical sentiment graph data as conllu files in 'data/sent_graphs'. If you want to run the experiments, you can use this data directly. If, however, you are interested in how we create the data, you can use the following steps.

The first step is to download and preprocess the data, and then create the sentiment dependency graphs. The original data can be downloaded and converted to json files using the scripts found at https://github.com/jerbarnes/finegrained_data. After creating the json files for the finegrained datasets following the instructions, you can then place the directories (renamed to 'mpqa', 'ds_unis', 'norec_fine', 'eu', 'ca') in the 'data' directory.

After that, you can use the available scripts to create the bilexical dependency graphs, as mentioned in the paper.

cd data
./create_english_sent_graphs.sh
./create_euca_sent_graphs.sh
./create_norec_sent_graphs
cd ..

Experimental results

To reproduce the results, first you will need to download the word vectors used:

mkdir vectors
cd vectors
wget http://vectors.nlpl.eu/repository/20/58.zip
wget http://vectors.nlpl.eu/repository/20/32.zip
wget http://vectors.nlpl.eu/repository/20/34.zip
wget http://vectors.nlpl.eu/repository/20/18.zip
cd ..

You will similarly need to extract mBERT token representations for all datasets.

./do_bert.sh

Finally, you can run the SLURM scripts to reproduce the experimental results.

./scripts/run_base.sh
./scripts/run_bert.sh
Owner
Jeremy Barnes
I'm a professor of Natural Language Processing. My interests are in multi-linguality and incorporating diverse sources of information into neural networks.
Jeremy Barnes
Python package for downloading ECMWF reanalysis data and converting it into a time series format.

ecmwf_models Readers and converters for data from the ECMWF reanalysis models. Written in Python. Works great in combination with pytesmo. Citation If

TU Wien - Department of Geodesy and Geoinformation 31 Dec 26, 2022
Let Python optimize the best stop loss and take profits for your TradingView strategy.

TradingView Machine Learning TradeView is a free and open source Trading View bot written in Python. It is designed to support all major exchanges. It

Robert Roman 473 Jan 09, 2023
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
This provides the R code and data to replicate results in "The USS Trustee’s risky strategy"

USSBriefs2021 This provides the R code and data to replicate results in "The USS Trustee’s risky strategy" by Neil M Davies, Jackie Grant and Chin Yan

1 Oct 30, 2021
GBIM(Gesture-Based Interaction map)

手势交互地图 GBIM(Gesture-Based Interaction map),基于视觉深度神经网络的交互地图,通过电脑摄像头观察使用者的手势变化,进而控制地图进行简单的交互。网络使用PaddleX提供的轻量级模型PPYOLO Tiny以及MobileNet V3 small,使得整个模型大小约10MB左右,即使在CPU下也能快速定位和识别手势。

8 Feb 10, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Data visualization app for H&M competition in kaggle

handm_data_visualize_app Data visualization app by streamlit for H&M competition in kaggle. competition page: https://www.kaggle.com/competitions/h-an

Kyohei Uto 12 Apr 30, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
Official implementation of VQ-Diffusion

Vector Quantized Diffusion Model for Text-to-Image Synthesis Overview This is the official repo for the paper: [Vector Quantized Diffusion Model for T

Microsoft 592 Jan 03, 2023
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022