Weakly Supervised Segmentation by Tensorflow.

Overview

Simple-does-it-weakly-supervised-instance-and-semantic-segmentation

There are five weakly supervised networks in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017). Respectively, Naive, Box, Box^i, Grabcut+, M∩G+. All of them use cheap-to-generate label, bounding box, during training and don't need other informations except image during testing.

This repo contains a TensorFlow implementation of Grabcut version of semantic segmentation.

My Environment

Environment 1

  • Operating System:
    • Arch Linux 4.15.15-1
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7.0.5-2
  • GPU:
    • GTX 1070 8G
  • Nvidia driver:
    • 390.25
  • Python:
    • python 3.6.4
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.5.0

Environment 2

  • Operating System:
    • Ubuntu 16.04
  • Memory
    • 64GB
  • CUDA:
    • CUDA V9.0.176
  • CUDNN:
    • CUDNN 7
  • GPU:
    • GTX 1060 6G
  • Nvidia driver:
    • 390.48
  • Python:
    • python 3.5.2
  • Python package:
    • tqdm, bs4, opencv-python, pydensecrf, cython...
  • Tensorflow:
    • tensorflow-gpu 1.6.0

Downloading the VOC12 dataset

Setup Dataset

My directory structure

./Simple_does_it/
├── Dataset
│   ├── Annotations
│   ├── CRF_masks
│   ├── CRF_pairs
│   ├── Grabcut_inst
│   ├── Grabcut_pairs
│   ├── JPEGImages
│   ├── Pred_masks
│   ├── Pred_pairs
│   ├── SegmentationClass
│   └── Segmentation_label
├── Model
│   ├── Logs
│   └── models
├── Parser_
├── Postprocess
├── Preprocess
└── Util

VOC2012 directory structure

VOCtrainval_11-May-2012
└── VOCdevkit
    └── VOC2012
        ├── Annotations
        ├── ImageSets
        │   ├── Action
        │   ├── Layout
        │   ├── Main
        │   └── Segmentation
        ├── JPEGImages
        ├── SegmentationClass
        └── SegmentationObject
  • Put annotations in 'Annotations'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/Annotations/* {PATH}/Simple_does_it/Dataset/Annotations/ 
  • Put images in 'JPEGImages'
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/JPEGImages/* {PATH}/Simple_does_it/Dataset/JPEGImages/
  • Put Ground truth in 'SegmentationClass' for computing mIoU and IoU
mv {PATH}/VOCtrainval_11-May-2012/VOCdevkit/VOC2012/SegmentationClass/* {PATH}/Simple_does_it/Dataset/SegmentationClass/

Demo (See Usage for more details)

Download pretrain model training on VOC12 (train set size: 1464)

  • Pretrain model
    • Move files from VOC12_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 1020
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt --restore_target 1020   
    
  • Performance
set CRF mIoU
train X 64.93%
train O 66.90%
val X 39.03%
val O 42.54%

Download pretrain model training on VOC12 + SBD (train set size: 10582)

  • Pretrain model
    • Move files from VOC12_SBD_CKPT to 'models'
  • Run test
    python ./Model/model.py --restore_target 538
    
  • Run train (See Training for more details)
    python ./Model/model.py --is_train 1 --set_name train.txt --restore_target 538
    
  • Performance
set CRF mIoU
train X 66.87%
train O 68.21%
val X 51.90%
val O 54.52%

Training (See Usage for more details)

Download pretrain vgg16

Extract annotations from 'Annotations' according to 'train.txt' or 'voc_train.txt' for VOC12 + SDB or VOC12

  • For VOC12 + SBD (train set size: 10582)
    • This will generate a 'train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py 
    
  • For VOC12 (train set size: 1464)
    • This will generate a 'voc_train_pairs.txt' for 'grabcut.py'
    python ./Dataset/make_train.py --train_set_name voc_train.txt --train_pair_name voc_train_pairs.txt
    

Generate label for training by 'grabcut.py'

  • Result of grabcut for each bounding box will be stored at 'Grabcut_inst'
  • Result of grabcut for each image will be stored at 'Segmentation_label'
  • Result of grabcut for each image combing with image and bounding box will be stored at 'Grabcut_pairs'
  • Note: If the instance hasn't existed at 'Grabcut_inst', grabcut.py will grabcut that image
  • For VOC12 + SBD (train set size: 10582)
    python ./Preprocess/grabcut.py
    
  • For VOC12 (train set size: 1464)
    python ./Preprocess/grabcut.py --train_pair_name voc_train_pairs.txt
    

Train network

  • The event file for tensorboard will be stored at 'Logs'
  • Train on VOC12 + SBD (train set size: 10582)
    • This will consume lot of memory.
      • The train set is so large.
      • Data dtyp will be casted from np.uint8 to np.float16 for mean substraction.
    • Eliminate mean substraction for lower memory usage.
      • Change the dtype in ./Dataset/load.py from np.float16 to np.uint8
      • Comment mean substraction in ./Model/model.py
    python ./Model/model.py --is_train 1 --set_name train.txt   
    
  • Train on VOC12 (train set size: 1464)
    python ./Model/model.py --is_train 1 --set_name voc_train.txt   
    

Testing (See Usage for more details)

Test network

  • Result will be stored at 'Pred_masks'
  • Result combing with image will be stored at 'Pred_pairs'
  • Result after dense CRF will be stored at 'CRF_masks'
  • Result after dense CRF combing with image will be stored at 'CRF_pairs'
  • Test on VOC12 (val set size: 1449)
    python ./Model/model.py --restore_target {num}
    

Performance (See Usage for more details)

Evaluate mIoU and IoU

  • Compute mIoU and IoU
    python ./Dataset/mIoU.py 
    

Usage

Parser_/parser.py

  • Parse the command line argument

Util/divied.py

  • Generating train.txt and test.txt according to 'JPEGImages'
  • Not necessary
usage: divied.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                 [--train_set_ratio TRAIN_SET_RATIO]
                 [--train_set_name TRAIN_SET_NAME]
                 [--test_set_name TEST_SET_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default: Util/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_set_ratio TRAIN_SET_RATIO
                        ratio for training set, [0,10] (default: 7)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --test_set_name TEST_SET_NAME
                        name for testing set (default: val.txt)

Dataset/make_train.py

  • Extract annotations from 'Annotations' according to 'train.txt'
  • Content: {image name}###{image name + num + class + .png}###{bbox ymin}###{bbox xmin}###{bbox ymax}###{bbox xmax}###{class}
  • Example: 2011_003038###2011_003038_3_15.png###115###1###233###136###person
usage: make_train.py [-h] [--dataset DATASET]
                     [--train_set_name TRAIN_SET_NAME]
                     [--ann_dir_name ANN_DIR_NAME]
                     [--train_pair_name TRAIN_PAIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        Dataset/../Parser_/../Dataset)
  --train_set_name TRAIN_SET_NAME
                        name for training set (default: train.txt)
  --ann_dir_name ANN_DIR_NAME
                        name for annotation directory (default: Annotations)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)

Preprocess/grabcut.py

  • Grabcut a traditional computer vision method
  • Input bounding box and image then generating label for training
usage: grabcut.py [-h] [--dataset DATASET] [--img_dir_name IMG_DIR_NAME]
                  [--train_pair_name TRAIN_PAIR_NAME]
                  [--grabcut_dir_name GRABCUT_DIR_NAME]
                  [--img_grabcuts_dir IMG_GRABCUTS_DIR]
                  [--pool_size POOL_SIZE] [--grabcut_iter GRABCUT_ITER]
                  [--label_dir_name LABEL_DIR_NAME]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Preprocess/../Parser_/../Dataset)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --train_pair_name TRAIN_PAIR_NAME
                        name for training pair (default: train_pairs.txt)
  --grabcut_dir_name GRABCUT_DIR_NAME
                        name for grabcut directory (default: Grabcut_inst)
  --img_grabcuts_dir IMG_GRABCUTS_DIR
                        name for image with grabcuts directory (default:
                        Grabcut_pairs)
  --pool_size POOL_SIZE
                        pool for multiprocess (default: 4)
  --grabcut_iter GRABCUT_ITER
                        grabcut iteration (default: 3)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)

Model/model.py

  • Deeplab-Largefov
usage: model.py [-h] [--dataset DATASET] [--set_name SET_NAME]
                [--label_dir_name LABEL_DIR_NAME]
                [--img_dir_name IMG_DIR_NAME] [--classes CLASSES]
                [--batch_size BATCH_SIZE] [--epoch EPOCH]
                [--learning_rate LEARNING_RATE] [--momentum MOMENTUM]
                [--keep_prob KEEP_PROB] [--is_train IS_TRAIN]
                [--save_step SAVE_STEP] [--pred_dir_name PRED_DIR_NAME]
                [--pair_dir_name PAIR_DIR_NAME] [--crf_dir_name CRF_DIR_NAME]
                [--crf_pair_dir_name CRF_PAIR_DIR_NAME] [--width WIDTH]
                [--height HEIGHT] [--restore_target RESTORE_TARGET]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Model/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --label_dir_name LABEL_DIR_NAME
                        name for label directory (default: Segmentation_label)
  --img_dir_name IMG_DIR_NAME
                        name for image directory (default: JPEGImages)
  --classes CLASSES     number of classes for segmentation (default: 21)
  --batch_size BATCH_SIZE
                        batch size for training (default: 16)
  --epoch EPOCH         epoch for training (default: 2000)
  --learning_rate LEARNING_RATE
                        learning rate for training (default: 0.01)
  --momentum MOMENTUM   momentum for optimizer (default: 0.9)
  --keep_prob KEEP_PROB
                        probability for dropout (default: 0.5)
  --is_train IS_TRAIN   training or testing [1 = True / 0 = False] (default:
                        0)
  --save_step SAVE_STEP
                        step for saving weight (default: 2)
  --pred_dir_name PRED_DIR_NAME
                        name for prediction masks directory (default:
                        Pred_masks)
  --pair_dir_name PAIR_DIR_NAME
                        name for pairs directory (default: Pred_pairs)
  --crf_dir_name CRF_DIR_NAME
                        name for crf prediction masks directory (default:
                        CRF_masks)
  --crf_pair_dir_name CRF_PAIR_DIR_NAME
                        name for crf pairs directory (default: CRF_pairs)
  --width WIDTH         width for resize (default: 513)
  --height HEIGHT       height for resize (default: 513)
  --restore_target RESTORE_TARGET
                        target for restore (default: 0)

Dataset/mIoU.py

  • Compute mIoU and IoU
usage: mIoU.py [-h] [--dataset DATASET] [--set_name SET_NAME]
               [--GT_dir_name GT_DIR_NAME] [--Pred_dir_name PRED_DIR_NAME]
               [--classes CLASSES]

optional arguments:
  -h, --help            show this help message and exit
  --dataset DATASET     path to dataset (default:
                        ./Dataset/../Parser_/../Dataset)
  --set_name SET_NAME   name for set (default: val.txt)
  --GT_dir_name GT_DIR_NAME
                        name for ground truth directory (default:
                        SegmentationClass)
  --Pred_dir_name PRED_DIR_NAME
                        name for prediction directory (default: CRF_masks)
  --classes CLASSES     number of classes (default: 21)

Dataset/load.py

  • Loading data for training / testing according to train.txt / val.txt

Dataset/save_result.py

  • Save result during testing

Dataset/voc12_class.py

  • Map the class to grayscale value

Dataset/voc12_color.py

  • Map the grayscale value to RGB

Postprocess/dense_CRF.py

  • Dense CRF a machine learning method
  • Refine the result

Reference

Owner
CHENG-YOU LU
CHENG-YOU LU
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
neural image generation

pixray Pixray is an image generation system. It combines previous ideas including: Perception Engines which uses image augmentation and iteratively op

dribnet 398 Dec 17, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis in JAX

SYMPAIS: Symbolic Parallel Adaptive Importance Sampling for Probabilistic Program Analysis Overview | Installation | Documentation | Examples | Notebo

Yicheng Luo 4 Sep 13, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.13

Keon Lee 140 Dec 21, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022