Deep Two-View Structure-from-Motion Revisited

Overview

Deep Two-View Structure-from-Motion Revisited

This repository provides the code for our CVPR 2021 paper Deep Two-View Structure-from-Motion Revisited.

We have provided the functions for training, validating, and visualization.

Note: some config flags are designed for ablation study, and we have a plan to re-org the codes later. Please feel free to submit issues if you feel confused about some parts.

Requirements

Python = 3.6.x
Pytorch >= 1.6.0
CUDA >= 10.1

and the others could be installed by

pip install -r requirements.txt

Pytorch from 1.1.0 to 1.6.0 should also work well, but it will disenable mixed precision training, and we have not tested it.

To use the RANSAC five-point algorithm, you also need to

cd RANSAC_FiveP

python setup.py install --user

The CUDA extension would be installed as 'essential_matrix'. Tested under Ubuntu and CUDA 10.1.

Models

Pretrained models are provided here.

KITTI Depth

To reproduce our results, please first download the KITTI dataset RAW data and 14GB official depth maps. You should also download the split files provided by us, and unzip them into the root of the KITTI raw data. Then, modify the gt_depth_dir (KITTI_loader.py, L278) to the address of KITTI official depth maps.

For training,

python main.py -b 32 --lr 0.0005 --nlabel 128 --fix_flownet \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained-depth depth_init.pth.tar --pretrained-flow flow_init.pth.tar

For evaluation,

python main.py -v -b 1 -p 1 --nlabel 128 \
--data PATH/TO/YOUR/KITTI/DATASET --cfg cfgs/kitti.yml \
--pretrained kitti.pth.tar"

The default evaluation split is Eigen, where the metric abs_rel should be around 0.053 and rmse should be close to 2.22. If you would like to use the Eigen SfM split, please set cfg.EIGEN_SFM = True and cfg.KITTI_697 = False.

KITTI Pose

For fair comparison, we use a KITTI odometry evaluation toolbox as provided here. Please generate poses by sequence, and evaluate the results correspondingly.

Acknowledgment:

Thanks Shihao Jiang and Dylan Campbell for sharing the implementation of the GPU-accelerated RANSAC Five-point algorithm. We really appreciate the valuable feedback from our area chairs and reviewers. We would like to thank Charles Loop for helpful discussions and Ke Chen for providing field test images from NVIDIA AV cars.

BibTex:

@article{wang2021deep,
  title={Deep Two-View Structure-from-Motion Revisited},
  author={Wang, Jianyuan and Zhong, Yiran and Dai, Yuchao and Birchfield, Stan and Zhang, Kaihao and Smolyanskiy, Nikolai and Li, Hongdong},
  journal={CVPR},
  year={2021}
}
Owner
Jianyuan Wang
Computer Vision
Jianyuan Wang
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization

SummaC: Summary Consistency Detection This repository contains the code for TACL2021 paper: SummaC: Re-Visiting NLI-based Models for Inconsistency Det

Philippe Laban 24 Jan 03, 2023
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
An University Project of Quera Web Crawling.

WebCrawlerProject An University Project of Quera Web Crawling. خزشگر اینستاگرام در این پروژه شما باید با استفاده از کتابخانه های زیر یک خزشگر اینستاگر

Mahdi 3 Aug 12, 2022
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022