SLAMP: Stochastic Latent Appearance and Motion Prediction

Overview

SLAMP: Stochastic Latent Appearance and Motion Prediction

Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Prediction (Adil Kaan Akan, Erkut Erdem, Aykut Erdem, Fatma Guney), accepted and presented at ICCV 2021.

Article

Preprint

Project Website

Pretrained Models

Requirements

All models were trained with Python 3.7.6 and PyTorch 1.4.0 using CUDA 10.1.

A list of required Python packages is available in the requirements.txt file.

Datasets

For preparations of datasets, we followed SRVP's code. Please follow the links below if you want to construct the datasets.

Stochastic Moving MNIST

KTH

BAIR

KITTI

For KITTI, you need to download the Raw KITTI dataset and extract the zip files. You can follow the official KITTI page.

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=310, h=92). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Cityscapes

For Cityscapes, you need to download leftImg8bit_sequence from the official Cityscapes page.

leftImg8bit_sequence contains 30-frame snippets (17Hz) surrounding each left 8-bit image (-19 | +10) from the train, val, and test sets (150000 images).

A good idea might be preprocessing every image in the dataset so that all of them have a size of (w=256, h=128). Then, you can disable the resizing operation in the data loaders, which will speed up the training.

Training

To train a new model, the script train.py should be used as follows:

Data directory ($DATA_DIR) and $SAVE_DIR must be given using options --data_root $DATA_DIR --log_dir $SAVE_DIR. To use GPU, you need to use --device flag.

  • for Stochastic Moving MNIST:
--n_past 5 --n_future 10 --n_eval 25 --z_dim_app 20 --g_dim_app 128 --z_dim_motion 20
--g_dim_motion 128 --last_frame_skip --running_avg --batch_size 32
  • for KTH:
--dataset kth --n_past 10 --n_future 10 --n_eval 40 --z_dim_app 50 --g_dim_app 128 --z_dim_motion 50 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20
  • for BAIR:
--dataset bair --n_past 2 --n_future 10 --n_eval 30 --z_dim_app 64 --g_dim_app 128 --z_dim_motion 64 --model vgg
--g_dim_motion 128 --last_frame_skip --running_avg --sch_sampling 25 --batch_size 20 --channels 3
  • for KITTI:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 8
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3
  • for Cityscapes:
--dataset bair --n_past 10 --n_future 10 --n_eval 30 --z_dim_app 32 --g_dim_app 64 --z_dim_motion 32 --batch_size 7
--g_dim_motion 64 --last_frame_skip --running_avg --model vgg --niter 151 --channels 3 --epoch_size 1300

Testing

To evaluate a trained model, the script evaluate.py should be used as follows:

python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH

where $LOG_DIR is a directory where the results will be saved, $DATADIR is the directory containing the test set.

Important note: The directory containing the script should include a directory called lpips_weights which contains v0.1 LPIPS weights (from the official repository of The Unreasonable Effectiveness of Deep Features as a Perceptual Metric).

To run the evaluation on GPU, use the option --device.

Pretrained weight links with Dropbox - For MNIST:
wget https://www.dropbox.com/s/eseisehe2u0epiy/slamp_mnist.pth
  • For KTH:
wget https://www.dropbox.com/s/7m0806nt7xt9bz8/slamp_kth.pth
  • For BAIR:
wget https://www.dropbox.com/s/cl1pzs5trw3ltr0/slamp_bair.pth
  • For KITTI:
wget https://www.dropbox.com/s/p7wdboswakyj7yi/slamp_kitti.pth
  • For Cityscapes:
wget https://www.dropbox.com/s/lzwiivr1irffhsj/slamp_cityscapes.pth

PSNR, SSIM, and LPIPS results reported in the paper were obtained with the following options:

  • for stochastic Moving MNIST:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 5 --n_future 20
  • for KTH:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 30
  • for BAIR:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 2 --n_future 28
  • for KITTI:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20
  • for Cityscapes:
python evaluate.py --data_root $DATADIR --log_dir $LOG_DIR --model_path $MODEL_PATH --n_past 10 --n_future 20

To calculate FVD results, you can use calculate_fvd.py script as follows:

python calculate_fvd.py $LOG_DIR $SAMPLE_NAME

where $LOG_DIR is the directory containg the results generated by the evaluate script and $SAMPLE_NAME is the file which contains the samples such as psnr.npz, ssim.npz or lpips.npz. The script will print the FVD value at the end.

How to Cite

Please cite the paper if you benefit from our paper or the repository:

@InProceedings{Akan2021ICCV,
    author    = {Akan, Adil Kaan and Erdem, Erkut and Erdem, Aykut and Guney, Fatma},
    title     = {SLAMP: Stochastic Latent Appearance and Motion Prediction},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14728-14737}
}

Acknowledgments

We would like to thank SRVP and SVG authors for making their repositories public. This repository contains several code segments from SRVP's repository and SVG's repository. We appreciate the efforts by Berkay Ugur Senocak for cleaning the code before release.

You might also like...
 Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

 Waymo motion prediction challenge 2021: 3rd place solution
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

Comments
  • Details on KTH and BAIR Validation Sets

    Details on KTH and BAIR Validation Sets

    Hi! Thanks for providing the implementation of SLAMP. In the data processing scripts (data/kth.py and data/bair.py), how do you generate kth_valset_40.npz and bair_valset_30.npz? Is it following the SRVP's code for generating test sets? Could you please provide some details on those sets? Thank you!

    opened by hanghang177 4
  • nsample missing arguments

    nsample missing arguments

    Hi during running your code, i was unexpectedly see an error due to missing arguments

    File "/notebooks/slamp/helpers.py", line 362, in eval_step nsample = opt.nsample

    File args.py doesnt have any definition about nsample, what does nsample mean? I suppose it should be the number of samples per batch in evaluation which means eval batch size Thanks for your reading

    opened by eric-le-12 1
Releases(v1.0)
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Cross-Task Consistency Learning Framework for Multi-Task Learning

Cross-Task Consistency Learning Framework for Multi-Task Learning Tested on numpy(v1.19.1) opencv-python(v4.4.0.42) torch(v1.7.0) torchvision(v0.8.0)

Aki Nakano 2 Jan 08, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Code for PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning

PackNet: https://arxiv.org/abs/1711.05769 Pretrained models are available here: https://uofi.box.com/s/zap2p03tnst9dfisad4u0sfupc0y1fxt Datasets in Py

Arun Mallya 216 Jan 05, 2023
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems

[ICLR 2021] "UMEC: Unified Model and Embedding Compression for Efficient Recommendation Systems" by Jiayi Shen, Haotao Wang*, Shupeng Gui*, Jianchao Tan, Zhangyang Wang, and Ji Liu

VITA 39 Dec 03, 2022