Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Related tags

Deep LearningHOTR
Overview


Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation)

HOTR: End-to-End Human-Object Interaction Detection with Transformers

HOTR is a novel framework which directly predicts a set of {human, object, interaction} triplets from an image using a transformer-based encoder-decoder. Through the set-level prediction, our method effectively exploits the inherent semantic relationships in an image and does not require time-consuming post-processing which is the main bottleneck of existing methods. Our proposed algorithm achieves the state-of-the-art performance in two HOI detection benchmarks with an inference time under 1 ms after object detection.

HOTR is composed of three main components: a shared encoder with a CNN backbone, a parallel decoder, and the recomposition layer to generate final HOI triplets. The overview of our pipeline is presented below.

1. Environmental Setup

$ conda create -n kakaobrain python=3.7
$ conda install -c pytorch pytorch torchvision # PyTorch 1.7.1, torchvision 0.8.2, CUDA=11.0
$ conda install cython scipy
$ pip install pycocotools
$ pip install opencv-python
$ pip install wandb

2. HOI dataset setup

Our current version of HOTR supports the experiments for V-COCO dataset. Download the v-coco dataset under the pulled directory.

# V-COCO setup
$ git clone https://github.com/s-gupta/v-coco.git
$ cd v-coco
$ ln -s [:COCO_DIR] coco/images # COCO_DIR contains images of train2014 & val2014
$ python script_pick_annotations.py [:COCO_DIR]/annotations

If you wish to download the v-coco on our own directory, simply change the 'data_path' argument to the directory you have downloaded the v-coco dataset.

--data_path [:your_own_directory]/v-coco

3. How to Train/Test HOTR on V-COCO dataset

For testing, you can either use your own trained weights and pass the directory to the 'resume' argument, or use our provided weights. Below is the example of how you should edit the Makefile.

# [Makefile]
# Testing your own trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/KakaoBrain/multi_run_000001/best.pth # the best performing checkpoint is saved in this format

# Testing our provided trained weights
multi_test:
  python -m torch.distributed.launch \
		--nproc_per_node=8 \
    ...
    --resume checkpoints/vcoco/q16.pth # download the q16.pth as described below.

In order to use our provided weights, you can download the weights from this link. Then, pass the directory of the downloaded file (for example, we put the weights under the directory checkpoints/vcoco/q16.pth) to the 'resume' argument as well.

# multi-gpu training / testing (8 GPUs)
$ make multi_[train/test]

# single-gpu training / testing
$ make single_[train/test]

4. Results

Here, we provide improved results of V-COCO Scenario 1 (58.9 mAP, 0.5ms) from the version of our initial submission (55.2 mAP, 0.9ms). This is obtained "without" applying any priors on the scores (see iCAN).

Epoch # queries Scenario 1 Scenario 2 Checkpoint
100 16 58.9 63.8 download

If you want to use pretrained weights for inference, download the pretrained weights (from the above link) under checkpoints/vcoco/ and match the interaction query argument as described in the weight file (others are already set in the Makefile). Our evaluation code follows the exact implementations of the official python v-coco evaluation. You can test the weights by the command below (e.g., the weight file is named as q16.pth, which denotes that the model uses 16 interaction queries).

python -m torch.distributed.launch \
    --nproc_per_node=8 \
    --use_env vcoco_main.py \
    --batch_size 2 \
    --HOIDet \
    --share_enc \
    --pretrained_dec \
    --num_hoi_queries [:query_num] \
    --temperature 0.05 \ # use the exact same temperature value that you used during training!
    --object_threshold 0 \
    --no_aux_loss \
    --eval \
    --dataset_file vcoco \
    --data_path v-coco \
    --resume checkpoints/vcoco/[:query_num].pth

The results will appear as the following:

[Logger] Number of params:  51181950
Evaluation Inference (V-COCO)  [308/308]  eta: 0:00:00    time: 0.2063  data: 0.0127  max mem: 1578
[stats] Total Time (test) : 0:01:05 (0.2114 s / it)
[stats] HOI Recognition Time (avg) : 0.5221 ms
[stats] Distributed Gathering Time : 0:00:49
[stats] Score Matrix Generation completed

============= AP (Role scenario_1) ==============
               hold_obj: AP = 48.99 (#pos = 3608)
              sit_instr: AP = 47.81 (#pos = 1916)
             ride_instr: AP = 67.04 (#pos = 556)
               look_obj: AP = 40.57 (#pos = 3347)
              hit_instr: AP = 76.42 (#pos = 349)
                hit_obj: AP = 71.27 (#pos = 349)
                eat_obj: AP = 55.75 (#pos = 521)
              eat_instr: AP = 67.57 (#pos = 521)
             jump_instr: AP = 71.44 (#pos = 635)
              lay_instr: AP = 57.09 (#pos = 387)
    talk_on_phone_instr: AP = 49.07 (#pos = 285)
              carry_obj: AP = 34.75 (#pos = 472)
              throw_obj: AP = 52.37 (#pos = 244)
              catch_obj: AP = 48.80 (#pos = 246)
              cut_instr: AP = 49.58 (#pos = 269)
                cut_obj: AP = 57.02 (#pos = 269)
 work_on_computer_instr: AP = 67.44 (#pos = 410)
              ski_instr: AP = 49.35 (#pos = 424)
             surf_instr: AP = 77.07 (#pos = 486)
       skateboard_instr: AP = 86.44 (#pos = 417)
            drink_instr: AP = 38.67 (#pos = 82)
               kick_obj: AP = 73.92 (#pos = 180)
               read_obj: AP = 44.81 (#pos = 111)
        snowboard_instr: AP = 81.25 (#pos = 277)
| mAP(role scenario_1): 58.94
----------------------------------------------------

The HOI recognition time is calculated by the end-to-end inference time excluding the object detection time.

5. Auxiliary Loss

HOTR follows the auxiliary loss of DETR, where the loss between the ground truth and each output of the decoder layer is also computed. The ground-truth for the auxiliary outputs are matched with the ground-truth HOI triplets with our proposed Hungarian Matcher.

6. Temperature Hyperparameter, tau

Based on our experimental results, the temperature hyperparameter is sensitive to the number of interaction queries and the coefficient for the index loss and index cost, and the number of decoder layers. Empirically, a larger number of queries require a larger tau, and a smaller coefficient for the loss and cost for HO Pointers requires a smaller tau (e.g., for 16 interaction queries, tau=0.05 for the default set_cost_idx=1, hoi_idx_loss_coef=1, hoi_act_loss_coef=10 shows the best result). The initial version of HOTR (with 55.2 mAP) has been trained with 100 queries, which required a larger tau (tau=0.1). There might be better results than the tau we used in our paper according to these three factors. Feel free to explore yourself!

7. Citation

If you find this code helpful for your research, please cite our paper.

@inproceedings{kim2021hotr,
  title={HOTR: End-to-End Human-Object Interaction Detection with Transformers},
  author    = {Bumsoo Kim and
               Junhyun Lee and
               Jaewoo Kang and
               Eun-Sol Kim and
               Hyunwoo J. Kim},
  booktitle = {CVPR},
  publisher = {IEEE},
  year      = {2021}
}

8. Contact for Issues

Bumsoo Kim, [email protected]

9. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. https://www.kakaobrain.com All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Generic image compressor for machine learning. Pytorch code for our paper "Lossy compression for lossless prediction".

Lossy Compression for Lossless Prediction Using: Training: This repostiory contains our implementation of the paper: Lossy Compression for Lossless Pr

Yann Dubois 84 Jan 02, 2023
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
DeepFill v1/v2 with Contextual Attention and Gated Convolution, CVPR 2018, and ICCV 2019 Oral

Generative Image Inpainting An open source framework for generative image inpainting task, with the support of Contextual Attention (CVPR 2018) and Ga

2.9k Dec 16, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022