This repository implements WGAN_GP.

Overview

Image_WGAN_GP

This repository implements WGAN_GP.

Image_WGAN_GP

This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you can download the datasets from main.py .

requirements

Before you run the code, you should install following packages for your environment.

You can see it in the requirements.txt.

install

pip install -r requirements.txt

torch>=0.4.0
torchvision
matplotlib
numpy
scipy
pillow
urllib3
scikit-image

Prepare the dataset

Before you run the code, you should prepare the dataset. You must replace the ROOT_PATH in main.py with your own path.

ROOT_PATH = '../..' # for linux
ROOT_PATH = 'D:/code/Image_WGAN_GP'  # for windows and change it into your work directory!

We provide the mnist , fashionmnist and cifar10 datasets. But you can download others , when you run the code. For example , download the cifar100, just add the following code in main.py and you should modify the models(We will finish it later).

opt.dataset == 'cifar100':
    os.makedirs(ROOT_PATH + "/data/cifar100", exist_ok=True)
    dataloader = torch.utils.data.DataLoader(
        datasets.CIFAR100(
            ROOT_PATH + "/data/cifar100",
            train=True,
            download=True,
            transform=transforms.Compose(
                [transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
            ),
        ),
        batch_size=opt.batch_size,
        shuffle=True,
    )

The data will be saved in data directory.

Training

Using mnist dataset.

python main.py -data 'mnist' -n_epochs 300

Using fashionmnist dataset.

python main.py -data 'fashionmnist' -n_epochs 300

The generated images will be saved in images directory.

Training parameters

You can see details in config.py

"--n_epochs", "number of epochs of training"

"--batch_size", "size of the batches"

"--lr","adam: learning rate"

"--b1","adam: decay of first order momentum of gradient"

"--b2", "adam: decay of first order momentum of gradient"

"--n_cpu", "number of cpu threads to use during batch generation"

"--latent_dim", "dimensionality of the latent space"

"--img_size", "size of each image dimension"

"--channels","number of image channels"

"--n_critic", "number of training steps for discriminator per iter"

"--clip_value","lower and upper clip value for disc. weights"

"--sample_interval", "interval betwen image samples"

'--exp_name', 'output folder name; will be automatically generated if not specified'

'--pretrain_iterations', 'iterations for pre-training'

'--pretrain', 'if performing pre-training'

'--dataset', '-data', choices=['mnist', 'fashionmnist', 'cifar10']

Save params

The parameters will be save in results. And you can change the saving directory name in config.py

Wasserstein GAN GP

Improved Training of Wasserstein GANs

Authors

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville

Abstract

Generative Adversarial Networks (GANs) are powerful generative models, but suffer from training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable training of GANs, but sometimes can still generate only low-quality samples or fail to converge. We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lipschitz constraint on the critic, which can lead to undesired behavior. We propose an alternative to clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed method performs better than standard WGAN and enables stable training of a wide variety of GAN architectures with almost no hyperparameter tuning, including 101-layer ResNets and language models over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.

[Paper]

wgan_gp

Owner
Lieon
Deep learning, Anomaly detection,Time series, Generative Adversarial Networks.
Lieon
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Cervix ROI Segmentation Using U-NET

Cervix ROI Segmentation Using U-NET Overview This code illustrate how to segment the ROI in cervical images using U-NET. The ROI here meant to include

Scotty Kwok 35 Sep 14, 2022
Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

Terbe Dániel 138 Dec 17, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
AdvStyle - Official PyTorch Implementation

AdvStyle - Official PyTorch Implementation Paper | Supp Discovering Interpretable Latent Space Directions of GANs Beyond Binary Attributes. Huiting Ya

Beryl 37 Oct 21, 2022
Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS of first stage is 3.42 and second stage is 3.47.

SDDNet Coarse implement of the paper "A Simultaneous Denoising and Dereverberation Framework with Target Decoupling", On DNS-2020 dataset, the DNSMOS

Cyril Lv 43 Nov 21, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022