Learning Chinese Character style with conditional GAN

Overview

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks

animation

Introduction

Learning eastern asian language typefaces with GAN. zi2zi(字到字, meaning from character to character) is an application and extension of the recent popular pix2pix model to Chinese characters.

Details could be found in this blog post.

Network Structure

Original Model

alt network

The network structure is based off pix2pix with the addition of category embedding and two other losses, category loss and constant loss, from AC-GAN and DTN respectively.

Updated Model with Label Shuffling

alt network

After sufficient training, d_loss will drop to near zero, and the model's performance plateaued. Label Shuffling mitigate this problem by presenting new challenges to the model.

Specifically, within a given minibatch, for the same set of source characters, we generate two sets of target characters: one with correct embedding labels, the other with the shuffled labels. The shuffled set likely will not have the corresponding target images to compute L1_Loss, but can be used as a good source for all other losses, forcing the model to further generalize beyond the limited set of provided examples. Empirically, label shuffling improves the model's generalization on unseen data with better details, and decrease the required number of characters.

You can enable label shuffling by setting flip_labels=1 option in train.py script. It is recommended that you enable this after d_loss flatlines around zero, for further tuning.

Gallery

Compare with Ground Truth

compare

Brush Writing Fonts

brush

Cursive Script (Requested by SNS audience)

cursive

Mingchao Style (宋体/明朝体)

gaussian

Korean

korean

Interpolation

animation

Animation

animation animation

easter egg

How to Use

Step Zero

Download tons of fonts as you please

Requirement

  • Python 2.7
  • CUDA
  • cudnn
  • Tensorflow >= 1.0.1
  • Pillow(PIL)
  • numpy >= 1.12.1
  • scipy >= 0.18.1
  • imageio

Preprocess

To avoid IO bottleneck, preprocessing is necessary to pickle your data into binary and persist in memory during training.

First run the below command to get the font images:

python font2img.py --src_font=src.ttf
                   --dst_font=tgt.otf
                   --charset=CN 
                   --sample_count=1000
                   --sample_dir=dir
                   --label=0
                   --filter=1
                   --shuffle=1

Four default charsets are offered: CN, CN_T(traditional), JP, KR. You can also point it to a one line file, it will generate the images of the characters in it. Note, filter option is highly recommended, it will pre sample some characters and filter all the images that have the same hash, usually indicating that character is missing. label indicating index in the category embeddings that this font associated with, default to 0.

After obtaining all images, run package.py to pickle the images and their corresponding labels into binary format:

python package.py --dir=image_directories
                  --save_dir=binary_save_directory
                  --split_ratio=[0,1]

After running this, you will find two objects train.obj and val.obj under the save_dir for training and validation, respectively.

Experiment Layout

experiment/
└── data
    ├── train.obj
    └── val.obj

Create a experiment directory under the root of the project, and a data directory within it to place the two binaries. Assuming a directory layout enforce bettet data isolation, especially if you have multiple experiments running.

Train

To start training run the following command

python train.py --experiment_dir=experiment 
                --experiment_id=0
                --batch_size=16 
                --lr=0.001
                --epoch=40 
                --sample_steps=50 
                --schedule=20 
                --L1_penalty=100 
                --Lconst_penalty=15

schedule here means in between how many epochs, the learning rate will decay by half. The train command will create sample,logs,checkpoint directory under experiment_dir if non-existed, where you can check and manage the progress of your training.

Infer and Interpolate

After training is done, run the below command to infer test data:

python infer.py --model_dir=checkpoint_dir/ 
                --batch_size=16 
                --source_obj=binary_obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=save_dir/

Also you can do interpolation with this command:

python infer.py --model_dir= checkpoint_dir/ 
                --batch_size=10
                --source_obj=obj_path 
                --embedding_ids=label[s] of the font, separate by comma
                --save_dir=frames/ 
                --output_gif=gif_path 
                --interpolate=1 
                --steps=10
                --uroboros=1

It will run through all the pairs of fonts specified in embedding_ids and interpolate the number of steps as specified.

Pretrained Model

Pretained model can be downloaded here which is trained with 27 fonts, only generator is saved to reduce the model size. You can use encoder in the this pretrained model to accelerate the training process.

Acknowledgements

Code derived and rehashed from:

License

Apache 2.0

Owner
Yuchen Tian
Born in the year of Snake, now stuck with Python.
Yuchen Tian
Code for the paper "Query Embedding on Hyper-relational Knowledge Graphs"

Query Embedding on Hyper-Relational Knowledge Graphs This repository contains the code used for the experiments in the paper Query Embedding on Hyper-

DimitrisAlivas 19 Jul 26, 2022
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
A Dataset of Python Challenges for AI Research

Python Programming Puzzles (P3) This repo contains a dataset of python programming puzzles which can be used to teach and evaluate an AI's programming

Microsoft 850 Dec 24, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation

FCN.tensorflow Tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation (FCNs). The implementation is largely based on the

Sarath Shekkizhar 1.3k Dec 25, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021