HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Overview

Class HiddenMarkovModel

HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0

Installation

pip install --upgrade git+https://gitlab.com/kesmarag/hmm-gmm-tf2
HiddenMarkovModel(p0, tp, em_w, em_mu, em_var)
Args:
  p0: 1D numpy array
    Determines the probability of the first hidden variable
    in the Markov chain for each hidden state.
    e.g. np.array([0.5, 0.25, 0.25]) (3 hidden states)
  tp: 2D numpy array
    Determines the transition probabilities for moving from one hidden state to each
    other. The (i,j) element of the matrix denotes the probability of
    transiting from i-th state to the j-th state.
    e.g. np.array([[0.80, 0.15, 0.05],
                   [0.20, 0.55, 0.25],
                   [0.15, 0.15, 0.70]])
    (3 hidden states)
  em_w: 2D numpy array
    Contains the weights of the Gaussian mixtures.
    Each line correspond to a hidden state.
    e.g. np.array([[0.8, 0.2],
                   [0.5, 0.5],
                   [0.1, 0.9]])
    (3 hidden states, 2 Gaussian mixtures)
  em_mu: 3D numpy array
    Determines the mean value vector for each component
    of the emission distributions.
    The first dimension refers to the hidden states whereas the
    second one refer to the mixtures.
    e.g. np.array([[[2.2, 1.3], [1.2, 0.2]],    1st hidden state
                   [[1.3, 5.0], [4.3, -2.3]],   2nd hidden state
                   [[0.0, 1.2], [0.4, -2.0]]])  3rd hidden state
    (3 hidden states, 2 Gaussian mixtures)
  em_var: 3D numpy array
    Determines the variance vector for each component of the
    emission distributions.
    e.g. np.array([[[2.2, 1.3], [1.2, 0.2]],    1st hidden state
                    [[1.3, 5.0], [4.3, -2.3]],   2nd hidden state
                    [[0.0, 1.2], [0.4, -2.0]]])  3rd hidden state
    (3 hidden states, 2 Gaussian mixtures)

log_posterior

HiddenMarkovModel.log_posterior(self, data)
Log probability density function.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time interval.
    The third dimension refers to the values of the observed data.

Returns:
  1D numpy array with the values of the log-probability function with respect to the observations.

viterbi_algorithm

HiddenMarkovModel.viterbi_algorithm(self, data)
Performs the viterbi algorithm for calculating the most probable
hidden state path of some batch data.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time interval.
    The third dimension refers to the values of the observed data.

Returns:
  2D numpy array with the most probable hidden state paths.
    The first dimension refers to each component of the batch.
    The second dimension the order of the hidden states.
    (0, 1, ..., K-1), where K is the total number of hidden states.

fit

HiddenMarkovModel.fit(self, data, max_iter=100, min_var=0.01, verbose=False)
This method re-adapts the model parameters with respect to a batch of
observations, using the Expectation-Maximization (E-M) algorithm.

Args:
  data: 3D numpy array
    The first dimension refers to each component of the batch.
    The second dimension refers to each specific time step.
    The third dimension refers to the values of the observed data.
  max_iter: positive integer number
    The maximum number of iterations.
  min_var: non-negative real value
    The minimum acceptance variance. We use this restriction
    in order to prevent overfitting of the model.

Returns:
  1D numpy array with the log-posterior probability densities for each training iteration.

generate

HiddenMarkovModel.generate(self, length, num_series=1, p=0.2)
Generates a batch of time series using an importance sampling like approach.

Args:
  length: positive integer
    The length of each time series.
  num_series: positive integer (default 1)
    The number of the time series.
  p: real value between 0.0 and 1.0 (default 0.2)
    The importance sampling parameter.
    At each iteration:
  k[A] Draw X and calculate p(X)
      if p(X) > p(X_{q-1}) then
        accept X as X_q
      else
        draw r from [0,1] using the uniform distribution.
        if r > p then
          accept the best of the rejected ones.
        else
          go to [A]

Returns:
  3D numpy array with the drawn time series.
  2D numpy array with the corresponding hidden states.

kl_divergence

HiddenMarkovModel.kl_divergence(self, other, data)
Estimates the value of the Kullback-Leibler divergence (KLD)
between the model and another model with respect to some data.

Example

import numpy as np
from kesmarag.hmm import HiddenMarkovModel, new_left_to_right_hmm, store_hmm, restore_hmm, toy_example
dataset = toy_example()

This helper function creates a test dataset with a single two dimensional time series with 700 samples.

The first 200 samples corresponds to a Gaussian mixture with 

    w1 = 0.6, w2=0.4
    mu1 = [0.5, 1], mu2 = [2, 1]
    var1 = [1, 1], var2=[1.2, 1]

the next 300 corresponds to a Gaussian mixture with

    w1 = 0.6, w2=0.4
    mu1 = [2, 5], mu2 = [4, 5]
    var1 = [0.8, 1], var2=[0.8, 1]

and the last 200 corresponds to a Gaussian mixture with

    w1 = 0.6, w2=0.4
    mu1 = [4, 1], mu2 = [6, 5]
    var1 = [1, 1], var2=[0.8, 1.2]
print(dataset.shape)
(1, 700, 2)
model = new_left_to_right_hmm(states=3, mixtures=2, data=dataset)
model.fit(dataset, verbose=True)
epoch:   0 , ln[p(X|λ)] = -3094.3748904062295
epoch:   1 , ln[p(X|λ)] = -2391.3602228316568
epoch:   2 , ln[p(X|λ)] = -2320.1563724302564
epoch:   3 , ln[p(X|λ)] = -2284.996645965759
epoch:   4 , ln[p(X|λ)] = -2269.0055909790053
epoch:   5 , ln[p(X|λ)] = -2266.1395773469876
epoch:   6 , ln[p(X|λ)] = -2264.4267494952455
epoch:   7 , ln[p(X|λ)] = -2263.156612481979
epoch:   8 , ln[p(X|λ)] = -2262.2725752851293
epoch:   9 , ln[p(X|λ)] = -2261.612564557431
epoch:  10 , ln[p(X|λ)] = -2261.102826808333
epoch:  11 , ln[p(X|λ)] = -2260.7189908960695
epoch:  12 , ln[p(X|λ)] = -2260.437608729253
epoch:  13 , ln[p(X|λ)] = -2260.231860238426
epoch:  14 , ln[p(X|λ)] = -2260.0784163526014
epoch:  15 , ln[p(X|λ)] = -2259.960659542152
epoch:  16 , ln[p(X|λ)] = -2259.8679640963023
epoch:  17 , ln[p(X|λ)] = -2259.793721328861
epoch:  18 , ln[p(X|λ)] = -2259.733658260372
epoch:  19 , ln[p(X|λ)] = -2259.684791553708
epoch:  20 , ln[p(X|λ)] = -2259.6448728507144
epoch:  21 , ln[p(X|λ)] = -2259.6121181368353
epoch:  22 , ln[p(X|λ)] = -2259.5850765029527





[-3094.3748904062295,
 -2391.3602228316568,
 -2320.1563724302564,
 -2284.996645965759,
 -2269.0055909790053,
 -2266.1395773469876,
 -2264.4267494952455,
 -2263.156612481979,
 -2262.2725752851293,
 -2261.612564557431,
 -2261.102826808333,
 -2260.7189908960695,
 -2260.437608729253,
 -2260.231860238426,
 -2260.0784163526014,
 -2259.960659542152,
 -2259.8679640963023,
 -2259.793721328861,
 -2259.733658260372,
 -2259.684791553708,
 -2259.6448728507144,
 -2259.6121181368353,
 -2259.5850765029527]
print(model)
### [kesmarag.hmm.HiddenMarkovModel] ###

=== Prior probabilities ================

[1. 0. 0.]

=== Transition probabilities ===========

[[0.995    0.005    0.      ]
 [0.       0.996666 0.003334]
 [0.       0.       1.      ]]

=== Emission distributions =============

*** Hidden state #1 ***

--- Mixture #1 ---
weight : 0.779990073797613
mean_values : [0.553266 1.155844]
variances : [1.000249 0.967666]

--- Mixture #2 ---
weight : 0.22000992620238702
mean_values : [2.598735 0.633391]
variances : [1.234133 0.916872]

*** Hidden state #2 ***

--- Mixture #1 ---
weight : 0.5188217626642593
mean_values : [2.514082 5.076246]
variances : [1.211327 0.903328]

--- Mixture #2 ---
weight : 0.4811782373357407
mean_values : [3.080913 5.039015]
variances : [1.327171 1.152902]

*** Hidden state #3 ***

--- Mixture #1 ---
weight : 0.5700082256217439
mean_values : [4.03977  1.118112]
variances : [0.97422 1.00621]

--- Mixture #2 ---
weight : 0.429991774378256
mean_values : [6.162698 5.064422]
variances : [0.753987 1.278449]
store_hmm(model, 'test_model.npz')
load_model = restore_hmm('test_model.npz')
gen_data = model.generate(700, 10, 0.05)
0 -2129.992044055025
1 -2316.443344656749
2 -2252.206072731434
3 -2219.667047368621
4 -2206.6760352374367
5 -2190.952289092368
6 -2180.0268345326112
7 -2353.7153702977475
8 -2327.955163192414
9 -2227.4471755146196
print(gen_data)
(array([[[-0.158655,  0.117973],
        [ 4.638243,  0.249049],
        [ 0.160007,  1.079808],
        ...,
        [ 4.671152,  4.18109 ],
        [ 2.121958,  3.747366],
        [ 2.572435,  6.352445]],

       [[-0.158655,  0.117973],
        [-1.379849,  0.998761],
        [-0.209945,  0.947926],
        ...,
        [ 3.93909 ,  1.383347],
        [ 5.356786,  1.57808 ],
        [ 5.0488  ,  5.586755]],

       [[-0.158655,  0.117973],
        [ 1.334   ,  0.979797],
        [ 3.708721,  1.321735],
        ...,
        [ 3.819756,  0.78794 ],
        [ 6.53362 ,  4.177215],
        [ 7.410012,  6.30113 ]],

       ...,

       [[-0.158655,  0.117973],
        [-0.152573,  0.612675],
        [-0.917723, -0.632936],
        ...,
        [ 4.110186, -0.027864],
        [ 2.82694 ,  0.65438 ],
        [ 6.825696,  5.27543 ]],

       [[-0.158655,  0.117973],
        [ 3.141896,  0.560984],
        [ 2.552211, -0.223568],
        ...,
        [ 4.41791 , -0.430231],
        [ 2.525892, -0.64211 ],
        [ 5.52568 ,  6.313566]],

       [[-0.158655,  0.117973],
        [ 0.845694,  2.436781],
        [ 1.564802, -0.652546],
        ...,
        [ 2.33009 ,  0.932121],
        [ 7.095326,  6.339674],
        [ 3.748988,  2.25159 ]]]), array([[0., 0., 0., ..., 1., 1., 1.],
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.],
       ...,
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.],
       [0., 0., 0., ..., 2., 2., 2.]]))
Owner
Susara Thenuwara
AI + Web Backend Engineer, image processing
Susara Thenuwara
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust.

Subspace Adversarial Training Single-step adversarial training (AT) has received wide attention as it proved to be both efficient and robust. However,

15 Sep 02, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Simple Python application to transform Serial data into OSC messages

SerialToOSC-Bridge Simple Python application to transform Serial data into OSC messages. The current purpose is to be a compatibility layer between ha

Division of Applied Acoustics at Chalmers University of Technology 3 Jun 03, 2021
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors

PSML paper: Towards Improving Embedding Based Models of Social Network Alignment via Pseudo Anchors PSML_IONE,PSML_ABNE,PSML_DEEPLINK,PSML_SNNA: numpy

13 Nov 27, 2022
JudeasRx - graphical app for doing personalized causal medicine using the methods invented by Judea Pearl et al.

JudeasRX Instructions Read the references given in the Theory and Notation section below Fire up the Jupyter Notebook judeas-rx.ipynb The notebook dra

Robert R. Tucci 19 Nov 07, 2022
Good Semi-Supervised Learning That Requires a Bad GAN

Good Semi-Supervised Learning that Requires a Bad GAN This is the code we used in our paper Good Semi-supervised Learning that Requires a Bad GAN Ziha

Zhilin Yang 177 Dec 12, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023