DEMix Layers for Modular Language Modeling

Related tags

Deep Learningdemix
Overview

DEMix

This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021).

This code is a fork of Fairseq. It is based on Python 3.8, CUDA 11 and includes PyTorch 1.8.0, NCCL 2.8.4 and apex.

Dataset

The multidomain dataset scripts are housed in another repository, located here. Clone that repository and follow instructions to setup data to train on.

Follow that tutorial to generate data-bins on eight (small) example domains.

Make sure to set the DATA_DIR accordingly.

Fairseq Installation

If you've already made an environment from the dataset creation phase, just use that. Otherwise:

conda create env --name demix
cd demix/
pip install --editable .

Additionally, please make sure you have the dependencies above installed (check Fairseq documentation for more information).

Tutorial

Here we will follow a tutorial to train on the example domains from the tutorial in the DEMix-data repository. Note that the model that results from this tutorial is pretty bad, because we're working with very small amounts of data and also a small LM. This tutorial is there to help you quickly understand the pipeline, and ensure that each script completes successfully.

To replicate the DEMix paper, with a GPT-3 model, follow the instructions here.

Basic Training

After setting up the example domains, run the following to train a small language model. Note that the scripts in this paper assume you are running on a multi-node GPU cluster with SLURM.

First, allocate some nodes, with GPUs with at least 32GB of RAM. Here we allocate 1 node with 8 volta32GB GPUs.

salloc --gpus-per-node 8 --nodes 1  -C 'volta32gb' --ntasks-per-node 8 --cpus-per-task 10 --mem 400G --time XXX --partition YYY

Then run:

export NUM_GPUS=8
export DISTRIBUTED_PORT=12345
export MODEL=transformer_lm
export EXPERIMENT=demix
# $DATA_DIR was set in DEMix-data tutorial.
export DATA_BIN=${DATA_DIR}/data-bin/
export EXPERIMENT_SUFFIX=tutorial
export SERIALIZATION_DIR=$(pwd)/demix_tutorial_model
bash tutorial/train.sh $NUM_GPUS \
                    $DISTRIBUTED_PORT \
                    $MODEL \
                    $EXPERIMENT \
                    $DATA_BIN \
                    $SERIALIZATION_DIR \
                    $EXPERIMENT_SUFFIX

This will output a trained language model in ${SERIALIZATION_DIR}

To train balanced dense LM, set export EXPERIMENT=dense, to train unbalanced dense LM, set export EXPERIMENT=unbalanced, to train "+Domain Token" LM , set export EXPERIMENT=domain_token.

We have provided a simple script demix/train.sh, with the same interface, with all hyperparameter preset to help replicate results in the paper.

Evaluation

We have two ways to evaluate the demix language model: with and without mixing experts.

Evaluating without mixing experts

To evaluate the language model without mixing experts, you can supply the checkpoint from a GPU on a particular rank (to specify the use of the domain expert that was trained on that GPU):

export DATA_BIN=${DATA_DIR}/data-bin/
export GPU_RANK=0
export PATH_TO_CHECKPOINT=${SERIALIZATION_DIR}/checkpoint_last-rank-${GPU_RANK}.pt
export OUTPUT_PATH=eval_output.jsonl
export SPLIT=valid
export DOMAIN=imdb
bash tutorial/eval_lm.sh $DATA_BIN $PATH_TO_CHECKPOINT $OUTPUT_PATH $SPLIT $DOMAIN

To evaluate on test data, set export SPLIT=test

The same script is used for the other baselines.

For the +domain token model, you can additionally supply a domain token to use at test time:

export DOMAIN_TOKEN=XXX
bash tutorial/eval_lm.sh $DATA_BIN $PATH_TO_CHECKPOINT $OUTPUT_PATH $SPLIT $DOMAIN $DOMAIN_TOKEN

Evaluating with mixing experts

First, we estimate the posterior distribution on 100 sequences of validation data of the domain using the following command:

export DATA_BIN=${DATA_DIR}/data-bin
export DOMAIN=imdb
export DEV_POSTERIOR_OUTPUT=dev_posteriors.jsonl
# set NUM_EVALUATION_GPUS equal to the number of experts you'd like to ensemble.
export NUM_EVALUATION_GPUS=8;
bash tutorial/mix_eval_lm.sh $NUM_EVALUATION_GPUS $DATA_BIN  ${SERIALIZATION_DIR}/checkpoint_last-rank-0.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-1.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-2.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-3.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-4.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-5.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-6.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-7.pt $DOMAIN $DEV_POSTERIOR_OUTPUT estimate;

Then, we open $POSTERIOR_OUTPUT, extracting the exp_avg_posterior value of the last line in that file:

export POSTERIOR=$(tail -n 1 $DEV_POSTERIOR_OUTPUT | jq -rc '.exp_avg_posterior | join(",")')

We use this posterior as the domain prior (supplied as a string) when evaluating on test data, like so:

bash tutorial/mix_eval_lm.sh $NUM_EVALUATION_GPUS $DATA_BIN  ${SERIALIZATION_DIR}/checkpoint_last-rank-0.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-1.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-2.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-3.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-4.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-5.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-6.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-7.pt $DOMAIN $DEV_POSTERIOR_OUTPUT eval $POSTERIOR cached_prior;

Adapting the Language Model

We additionally provide scripts to adapt the language model to a new domain.

DEMix DAPT

In this tutorial, we just adapt one of the existing experts to a new example domain in the demix-data project, located in /path/to/demix-data/new_example_domains.

First, we need to figure out which domain expert has the most affinity to the target domain we want to adapt to:

export NEW_DATA_BIN=/private/home/suching/demix-data/new_example_domains/data-bin/
export NEW_DOMAIN=acl_papers
export DEV_POSTERIOR_OUTPUT=${NEW_DOMAIN}_posterior.jsonl
# set NUM_EVALUATION_GPUS equal to the number of experts you'd like to ensemble.
export NUM_EVALUATION_GPUS=8;
bash tutorial/mix_eval_lm.sh $NUM_EVALUATION_GPUS $NEW_DATA_BIN  ${SERIALIZATION_DIR}/checkpoint_last-rank-0.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-1.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-2.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-3.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-4.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-5.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-6.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-7.pt $NEW_DOMAIN $DEV_POSTERIOR_OUTPUT estimate;
export POSTERIOR=$(tail -n 1 $DEV_POSTERIOR_OUTPUT | jq -rc '.exp_avg_posterior | join(",")')

Here, we find that the most likely expert is expert number 5.

export POSTERIOR=$(tail -n 1 $DEV_POSTERIOR_OUTPUT | jq -rc '.exp_avg_posterior | join(",")')
echo $POSTERIOR

We then adapt expert 5 to the target domain using the tutorial/dapt.sh script, using DEMix DAPT:

export PATH_TO_CHECKPOINT=${SERIALIZATION_DIR}/checkpoint_last-rank-5.pt
export UNFREEZE_PARAMETERS=feedforward
export NEW_SERIALIZATION_DIR=$(pwd)/${NEW_DOMAIN}_demix_dapt
export EXPERIMENT_SUFFIX=test
bash tutorial/dapt.sh $NEW_DATA_BIN $NEW_DOMAIN $PATH_TO_CHECKPOINT $UNFREEZE_PARAMETERS $NEW_SERIALIZATION_DIR $EXPERIMENT_SUFFIX

Once this is trained, you can add that expert to your ensemble when evaluating on new data:

export NEW_DATA_BIN=/path/to/demix-data/new_example_domains/data-bin/
export NEW_DOMAIN=acl_papers
export DEV_POSTERIOR_OUTPUT=${NEW_DOMAIN}_posterior.jsonl
# set NUM_EVALUATION_GPUS equal to the number of experts you'd like to ensemble.
export NUM_EVALUATION_GPUS=8;
export PATH_TO_NEW_EXPERT=${NEW_SERIALIZATION_DIR}/checkpoint_last-rank-0.pt
bash tutorial/mix_eval_lm.sh $NUM_EVALUATION_GPUS $NEW_DATA_BIN  ${SERIALIZATION_DIR}/checkpoint_last-rank-0.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-1.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-2.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-3.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-4.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-5.pt:${SERIALIZATION_DIR}/checkpoint_last-rank-6.pt:${PATH_TO_NEW_EXPERT} $NEW_DOMAIN $DEV_POSTERIOR_OUTPUT estimate;
export POSTERIOR=$(tail -n 1 $DEV_POSTERIOR_OUTPUT | jq -rc '.exp_avg_posterior | join(",")')

Dense DAPT

If you wanted to do Dense DAPT instead, just change the environment variables:

export PATH_TO_CHECKPOINT=/path/to/dense/model/checkpoint_last.pt
export FEEDFORWARD_OR_FULL=full
export SERIALIZATION_DIR=$(pwd)/${NEW_DOMAIN}_dense_dapt
export EXPERIMENT_SUFFIX=test
bash tutorial/dapt.sh $NEW_DATA_BIN $NEW_DOMAIN $PATH_TO_CHECKPOINT $FEEDFORWARD_OR_FULL $SERIALIZATION_DIR $EXPERIMENT_SUFFIX
Owner
Suchin
Allen Institute for AI / Facebook AI
Suchin
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Implementation for "Conditional entropy minimization principle for learning domain invariant representation features"

Implementation for "Conditional entropy minimization principle for learning domain invariant representation features". The code is reproduced from thi

1 Nov 02, 2022
ISNAS-DIP: Image Specific Neural Architecture Search for Deep Image Prior [CVPR 2022]

ISNAS-DIP: Image-Specific Neural Architecture Search for Deep Image Prior (CVPR 2022) Metin Ersin Arican*, Ozgur Kara*, Gustav Bredell, Ender Konukogl

Özgür Kara 24 Dec 18, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Twins: Revisiting the Design of Spatial Attention in Vision Transformers

Twins: Revisiting the Design of Spatial Attention in Vision Transformers Very recently, a variety of vision transformer architectures for dense predic

482 Dec 18, 2022
A Python package to process & model ChEMBL data.

insilico: A Python package to process & model ChEMBL data. ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper

Steven Newton 0 Dec 09, 2021
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks."

alpha-GAN Unofficial pytorch implementation of Rosca, Mihaela, et al. "Variational Approaches for Auto-Encoding Generative Adversarial Networks." arXi

Victor Shepardson 78 Dec 08, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
A torch.Tensor-like DataFrame library supporting multiple execution runtimes and Arrow as a common memory format

TorchArrow (Warning: Unstable Prototype) This is a prototype library currently under heavy development. It does not currently have stable releases, an

Facebook Research 536 Jan 06, 2023
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

THUNLP 75 Nov 02, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022